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a b s t r a c t 

Alzheimer’s disease (AD) has been not only a substantial financial burden to the health care system but 

also the emotional hardship to patients and their families. Predicting cognitive performance of subjects 

from their magnetic resonance imaging (MRI) measures and identifying relevant imaging biomarkers are 

important research topics in the study of Alzheimer’s disease. Many previous works formulate the pre- 

diction task as a linear regression problem. The most critical limitation is that they assume a linear rela- 

tionship between the MRI features and the cognitive outcomes. The linear models in original MRI feature 

spaces can be limited by their inability to exploit the nonlinear relation between the MRI features and 

cognitive measure prediction tasks. To better capture the complicated but more flexible relationship be- 

tween the cognitive scores and the neuroimaging measures, we propose a � 2 , 1 − � 1 norm regularized 

multi-kernel multi-task feature learning formulation with a joint sparsity inducing regularization. The 

formulation facilitates the shared kernel functions, as well as the high dimensional features in the kernel 

induced feature spaces simultaneously, to look for the common representation that are useful for all tasks 

by promoting use of few kernels and few learned features in each kernel. For optimization, we develop 

an alternating optimization method to effectively solve the proposed mixed norm regularized formula- 

tion. We evaluate the performance of the proposed method using the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) datasets and demonstrate that our proposed methods achieve not only clearly improved 

prediction performance for cognitive measurements with single MRI modality or multi-modalities data, 

but also a compact set of highly suggestive biomarkers relevant to AD. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is the most common cause of demen-

ia, which mainly affects memory function, ultimately culminating

n a dementia state where all cognitive functions are affected. The

isease poses a serious challenge to the aging society [1,2] . Pre-

icting cognitive performance of subjects from neuroimage mea-

ures and identifying relevant imaging biomarkers are important

esearch topics in the study of Alzheimer’s disease. Many cognitive

easures have been designed to clinically evaluate the cognitive

tatus of the patients and used as important criteria for clinical

iagnosis of probable AD, such as Alzheimer’s Disease Assessment

cale cognitive total score (ADAS), Mini Mental State Exam score

MMSE), Rey Auditory Verbal Learning Test (RAVLT), Category Flu-
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ncy (FLU), and Trail Making Test (TRAILS). Recently more atten-

ion has been given to the prediction of the cognitive outcomes

nd the identification of neuroimaging predictors for cognitive de-

line in AD. Magnetic resonance imaging (MRI) provides a chance

o directly observe brain changes such as cerebral atrophy or ven-

ricular expansion [3] . The relationship between structural changes

n MRI and the cognitive measures has been previously studied by

egression models [4–6] . 

Recently, instead of learning individual models, the multi-task

earning (MTL) methods [7] have been widely studied to jointly

uild a better model for each task by incorporating inherent cor-

elations among multiple clinical cognitive measures [6,8–13] . The

rimary motivation of using multi-task learning is due to its abil-

ty to learn a shared representation across related tasks and re-

uce the prediction error of each task. The most recent studies

14–16] employed multi-task based linear models with � 2,1 norm

17] regularization to identify the features that are important all

r most clinical scores. The � 2,1 -norm is chosen to be the regular-

https://doi.org/10.1016/j.patcog.2018.01.028
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ization because it encourages multiple predictors to share similar

sparsity patterns. Thus, the � 2,1 -norm regularized regression model

is able to select some common features across all the tasks. How-

ever, the assumption of these existing linear models usually does

not hold due to the inherently complex patterns between brain im-

ages and the corresponding cognitive outcomes. Modeling cogni-

tive scores as nonlinear functions of MRI features may provide en-

hanced flexibility and the potential to better capture the complex

relationship between the MRI features and cognitive outcomes. 

Many kernel-based classification or regression methods with

faster optimization speed or stronger generalization performance

have been proposed and investigated by theoretical analysis and

experimental evaluation [18,19] . The kernel methods also have

been widely used for the predictive classification [20,21] or re-

gression [14] in the current research on Alzheimer’s disease. Since

imaging markers relevant to a certain cognition task more or less

affect the other cognitive scores, naturally these prediction tasks

share some commonality. It is therefore important to extend the

existing kernel-based learning methods to the multi-task learning

paradigm, and how to incorporate the scheme of multi-task learn-

ing into the kernel methods is critical. Some work proposed meth-

ods incorporating task relations into regularization terms in kernel

methods by assuming that the tasks share the same kernel. Hence,

the problem of inferring task relationships boils down to the prob-

lem of learning a multi-task kernel [22,23] . The most related work

to ours is CORrelation- and NonLINearity-aware SBL (CORNLIN) in

[5] , where a polynomial kernel function is adopted as a nonlinear

mapping to introduce high-order features and the cognitive scores

are modeled as nonlinear functions of neuroimaging variables. An

� 2,1 norm is employed on the higher dimensional features to build

the correlation among the tasks. It has shown the superiority of

the nonlinearity-aware method compared with the competing lin-

ear methods. However, the limitations of CORNLIN [5] are: (1) The

high-order features are explicitly represented by the polynomial

kernel. It cannot be mapped to other high-order feature forms by

more complicated kernels, e.g. RBF, leading to limited flexibility

and predictive performance; (2) the choice of the types and pa-

rameters of the kernels is critical for a particular task [24] , which

determines the mapping between the input space and the feature

space. The inappropriate kernels may not accurately capture the

correlation structure of the data. It is necessary to emplmultiple

kernels for learning multiple tasks. A possible way to address this

problem is to learn an optimal kernel function by a weighted, lin-

ear combination of predefined candidate kernels within the frame-

work of multiple kernel learning (MKL) [25] . The idea of exploit-

ing multiple kernels to improve MTL has also been addressed in

[26,27] . They model relationships between the function parameters

by employing multiple kernels for multiple tasks via kernel regu-

larizations. Although these works capture the nonlinear predictors-

to-response relationship and encourage the parameters of kernel

functions to be shared across the multiple tasks, they donnot con-

sider the intrinsic relationships among multiple related tasks over

the higher dimensional features in the RKHS (Reproducing Kernel

Hilbert Spaces). The limitation lead to ignore the shared non-linear

predictive information beneficial to tasks in the kernel space. In

addition, the combination of MKL and MTL has also been applied

in the diagnosis of AD. Two most recent studies employed MTL to

select features from multi-modality data (MRI and PET) [28,29] or

from multi-task (e.g. ADAS, MMSE) [30] by � 2,1 norm linearized

MTL, then a MKL method is adopted to combine multi-modality

data. However, in all the three methods, the MTL and MKL are con-

ducted individually rather than collectively as in an unified frame-

work, The two sub-problems influence each other, resulting in ob-

taining a suboptimal solution. Moreover, the combination of the

linearized MTL for feature learning and the nonlinear MKL for fu-
t  
ion and classification tends to result in inconsistencies since they

ork in the different spaces. 

Given these considerations, a question rises naturally: how to

ormulate the MTL problem in the kernel-induced feature space and to

btain the best kernel space at the same time? The question above

otivates us to develop a novel framework to model task relation-

hip in the high dimensional features and kernel functions simul-

aneously when handling multiple related regression tasks. Firstly,

e exploit a nonlinear prediction model to capture the more com-

licated but more flexible relationship between MRI measures and

ognitive outcomes using multi-kernel method as a framework. 

Rather than conducting feature learning and kernel learning in-

ividually, we pose the problem of multi-task learning as that of

imultaneously learning a shared representation from high dimen-

ional features and kernels, to capture the kernel-wise relation-

hips among multiple tasks without ignoring the feature-wise cor-

elation within each kernel space. Specifically, we propose a multi-

ernel based multi-task learning with a joint sparsity-inducing reg-

larization � 2 , 1 − � 1 norm, called � 2 , 1 − � 1 SMKMTL. The proposed

ormulation explicitly captures the task correlation structure with

 2,1 -norm regularization on the high dimensional features in the

KHS space. Moreover, an � 1 -norm is simultaneously employed

ver the � 2,1 -norm, which ensures a small subset of kernels will

e selected across all the tasks, thus identifies the important ker-

el functions. An overview of the proposed cognitive scores pre-

iction pipeline is illustrated in Fig. 1 . Convincing experimental re-

ults show that exploiting the two kinds of correlations can sig-

ificantly improve the prediction performance and help accurately

dentify biologically meaningful imaging predictors. Then, we de-

ive an alternative optimization algorithm to solve the proposed

ixed norm regularized formulation efficiently. Furthermore, the

KL model has the advantage of fusing multiple modalities [14] .

e apply our SMKMTL on multiple data modalities (MRI, PET,

poE and demographic information) in our study. 

The rest of this paper is organized as follows. Section 2 presents

he problem formulation. Section 3 briefly reviews � 2,1 -norm reg-

larized multi-task learning. Section 4 introduces the formulation

f our proposed � 2 , 1 − � 1 SMKMTL method and optimization algo-

ithm. Section 5 presents experimental results on comparison of

ifferent prediction methods using the Alzheimer’s Disease Neu-

oimaging Initiative (ADNI) data [31] . A discussion and limitations

re provided in Section 6 . This paper is concluded in Section 7 . 

. Problem formulation 

The aim of our work is to predict subjects’ cognitive scores (e.g.

DAS, MMSE) using their MRI features (e.g. volume, area and thick-

ess) across the entire brain. It is a regression problem. In order

o associate the imaging markers and the cognitive measures, the

egularized multivariate regression model is adopted in our study,

reating MRI features as inputs and cognitive outcomes as out-

uts. Let X = [ x 1 , . . . , x n ] 
T ∈ R 

n ×p be MRI features (e.g. the volume

f hippocampus), where n and p are the number of training in-

tances and dimensionality of x i , Y = [ y 1 , . . . , y n ] 
T ∈ R 

n ×t , where y i
s the target cognitive score for x i and t is the number of tasks,

 = [ w 1 , . . . , w t ] ∈ R 

p×t , where w h is the weight vector for the

 th task. 

In the regression method of each prediction task, a subject’s

ognitive score under a task is modeled as a linear function of the

orresponding MRI features: f (x i ) = x i w t . For instance, for the i th

ubject the cognitive score under the h th task is model as: 

 h = w h 1 x i 1 + w h 2 x i 2 + · · · + w hp x ip + ξh (1)

here ξ h denotes the residual error of the h th task. 

In our study, multiple regression models for t tasks are simul-

aneously considered for learning. The objective function with re-
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Fig. 1. Schematic illustration of our proposed framework. 
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pect to W can be formulated as: 

in 

W 

L (Y , X , W ) + λR (W ) , (2)

here L ( ·) denotes the loss function (The square loss is considered:

 (·) = ‖ Y − XW ‖ 2 F ), R ( ·) is the regularizer and λ> 0 is the regular-

zation parameter 

Many regularization based MTL methods with different assump-

ions about how tasks are related have been proposed, leading to

ifferent regularization terms R ( W ) in the formulation. 

. � 2,1 -norm regularized multi-task learning 

.1. � 2,1 -norm regularized linear multi-task learning 

The biggest challenge in the prediction of inferring cognitive

utcomes with MRI is the high dimensionality, which affects the

omputational performance and leads to a wrong estimation and

dentification of the relevant predictors. The commonly used � 2 -

orm regularization leads to non-zero values for all parameters in

 . To reduce the high dimensionality of MRI features and iden-

ify some relevant biomarkers, some sparse methods with sparsity-

nducing regularization have been employed [32] , such as Lasso

33] . The Lasso formulation solves the following optimization prob-

em: 

in 

W 

‖ Y − X W ‖ 

2 
F + λ‖ W ‖ 1 , (3) 

here and ‖·‖ F denotes the Frobenius norm. One major limitation

f the Lasso above is that the tasks are assumed to be independent

rom each other. 

Multi-task learning (MTL) [7] is a learning paradigm which

eeks to improve the generalization performance of all tasks in-

olved. The fundamental hypothesis of the MTL methods is to as-

ume that if tasks are related then learning of one task can benefit

rom the learning of other tasks. Learning multiple related tasks si-

ultaneously has been theoretically and empirically shown to of-

en significantly improve the performance [22,34–36] . The key of

he MTL is how to exploit the correlation among the tasks via an

ppropriate shared representation. Two popular shared represen-

ations for modeling task relatedness are model parameter sharing

17,37] and feature representation sharing [38–40] . It is known that 

here exist inherent correlations among different cognitive scores

5,6,41] . Therefore, the prediction of different types of cognitive

cores is modeled as a MTL formulation, and the tasks are related

n the sense that they all share a small set of features for all tasks,

hich is multi-task feature learning problem [42] . The assumption

f feature representation sharing in AD is that only a subset of

rain regions are relevant to each assessment, since multiple cog-

itive assessment are essentially influenced by the same important

nderlying pathology. 
The � 2,1 -norm was popularly used in multi-task feature learning

42] . Since the � 2,1 -norm regularizer imposes the sparsity between

ll features and non-sparsity between tasks, the features that are

iscriminative for all tasks will get large weights. The objective

unction of the � 2,1 -norm regularized MTL (called � 2,1 MTL) is given

y: 

in 

W 

‖ Y − X W ‖ 

2 
F + λ‖ W ‖ 2 , 1 (4) 

One major challenge lies in the nonsmoothness of the � 2,1 -norm

egularization. The formulation of (4) can be solved by Nesterov’s

ethod with proximal gradient efficiently [43] . 

.2. � 2,1 -norm regularized multi-kernel multi-task learning 

The limitation in this traditional � 2,1 MTL model is that a sub-

ect’s cognitive score under a task is modeled as a linear func-

ion of the MRI features. The kernel methods, e.g. SVM or SVR can

odel the nonlinear distribution of the data by mapping the input

ata into a nonlinear feature space by kernel embedding. In this

ection, we consider the case that � 2,1 MTL is extended to learn the

orm of high-dimensional feature with nonlinear feature mapping.

et us define the kernel function φ j (x ) : R 

p → R ̂

 p , that maps the

ata samples from an input space X to a feature space (RKHS) H,

here ˆ p denotes the dimensionality of the feature space. A kernel

unction k ′ is capable of attaining the inner product of two mapped

ata in H: k ′ (x , x ′ ) = φ(x ) · φ(x ′ ) without explicitly computing the

igh-dimensional data. The Gram matrix associated with the ker-

el function k ′ has entries K(i, j) = k ′ (x i , x j ) . With the kernel map-

ing φ( ·), we can model the h th cognitive measure as a nonlinear

unction of the MRI features for the i th subject: 

 h = 

ˆ w h 1 φ(x i ) 1 + 

ˆ w h 2 φ(x i ) 2 + · · · + 

ˆ w h ̂ p φ(x i ) ˆ p + ξ (5)

In the kernel methods, the most suitable types and parameters

f the kernels for a particular task is often unknown. Instead of

sing only one specific kernel, Multiple Kernel Learning (MKL) at-

empts to achieve better results by combining several base kernels.

KL assumes that x i can be mapped to k different Hilbert spaces,

 i → φ j (x i ) , j = 1 , . . . , k, implicitly with k nonlinear mapping func-

ions, and the objective of MKL is to seek the optimal kernel com-

ination 

ˆ k ′ (x , x ′ ) = 

∑ k 
j=1 d j k 

′ 
j 
(x, x ′ ) , d j ≥ 0 , 

∑ k 
j=1 d j = 1 , where d is

he kernel weight vector. The constraint of the kernel weight vec-

or is also called simplex. We denote S d := { d ≥ 0 , 
∑ k 

j=1 d j = 1 } .
he primal objective function of multiple kernel regression model
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Fig. 2. The visualization of the learned weight tensor ̂ W . The tensor is indexed by 

features, kernel and tasks. Each rectangle indicates a RKHS induced by a specific 

kernel function, and � 1 -norm regularizer is applied to promote the use of few ker- 

nels. The regression weights of the high dimensional features for a particular kernel 

are encouraged to be either zero or non-zero across all the tasks. 
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m  
is written as: 

min 

̂ 

 ,ξ , d∈S d 

1 

2 

k ∑ 

j=1 

‖ ̂  w j ‖ 

2 
2 

d j 
+ 

λ

2 

n ∑ 

i =1 

ξ 2 
i 

s.t. 

k ∑ 

j=1 

ˆ w 

T 
j φ j (x i ) − y i = ξi , i = 1 , . . . , n 

(6)

where ˆ w j is the normal of the separating hyperplane for the fea-

ture mapping φj , ξ = [ ξ1 , . . . , ξn ] is the vector of slack variables,

and λ is the regularization parameter. 

The objective value of the dual problem of (6) : 

J(d) = max 
α

−αT y t − 1 

2 

αT ˆ K α − 1 

2 C 
α∗T α

s.t. 

k ∑ 

j=1 

d j = 1 , d j ≥ 0 

(7)

where ˆ K = 

∑ k 
j=1 d j K j , is the combined Gram matrix. 

MKL learns both the weights of the kernel combination d and

the parameters of the regression 

̂ W by solving a single joint opti-

mization problem. We follow the multiple kernel Learning scheme

and use the � 2,1 -norm to model the relationship among the tasks

to learn a common kernel representation by imposing sparsity con-

straint on the kernel weight. The method, called � 2,1 MKMTL, as-

sumes that few base kernel is important for the tasks, and encour-

ages a linear combination of only few kernels and assumes few

selected kernels are similar across the tasks. The formulation of

� 2,1 MKMTL can be expressed as: 

min 

̂ W , ξ

1 

2 

⎛ ⎝ 

k ∑ 

j=1 

( 

t ∑ 

h =1 

‖ ̂

 w j.h ‖ 

2 
2 

) 

1 
2 

⎞ ⎠ 

2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
ti 

s.t. 

k ∑ 

j=1 

ˆ w 

T 
j.h φ j (x ti ) − y ti = ξhi , h = 1 , . . . , t, i = 1 . . . n h 

(8)

where ̂ W ∈ R 

k × ˆ p j ×t = 

{ 

̂ W 1 , . . . , 
̂ W k 

} 

is a weight tensor indexed by

kernel, features and tasks (See Fig. 2 ), ̂ W j ∈ R ̂

 p ×t denotes the pa-

rameter matrix, with row 

ˆ w jl. ∈ R ̂

 p corresponding to feature l ,

l = 1 , . . . , R ̂

 p , and column 

ˆ w j.h ∈ R 

t corresponding to task h , h =
1 , . . . , t, ˆ w jlh is the l th feature weight of the h th task in the j th

RKHS, ξ is the regression error, and λ adjusts the trade-off between

the regression error and the regularization. 

According to the Proposition 1 in [27] , the formulation of

Eq. (8) can be rewritten as: 
min 

̂ 

 , D , ξ

1 

2 

k,t ∑ 

j=1 ,h =1 

‖ ̂

 w j.h ‖ 

2 
2 

d h j 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
ti 

s.t. 

k ∑ 

j=1 

ˆ w 

T 
j.h φ j (x ti ) − y hi = ξhi , h = 1 . . . t, i = 1 . . . n h 

k ∑ 

j=1 

( 

t ∑ 

h =1 

d 2 h j 

) 

1 
2 

≤ 1 , d h j ≥ 0 , ∀ h, k, 

(9)

here matrix D = [ d 1 , . . . , d t ] 
T ∈ R 

t×k is the matrix of the kernel

eights. 

The formulation in Eq. (9) transfers the mixed � 2,1 -norm on 

̂W 

o another mixed norm on the weights D . The formulation pro-

otes sparsity across kernels with an � 1 norm and non-sparse

ombinations across tasks. The formulation can be solved by an

terative algorithm based on block-coordinate descent [27] . 

. � 2 , 1 − � 1 regularized sparse multi-kernel multi-task 

earning, � 2 , 1 − � 1 SMKMTL 

.1. Formulation of � 2 , 1 − � 1 SMKMTL 

The linearized � 2,1 MTL assumed linear relationship between the

RI features and the cognitive outcomes. Although the multi-

ernel � 2,1 MKMTL builds the nonlinear relationship for the fea-

ures and tasks by mapping to high dimensional space, it only con-

iders that tasks to be learned share a common subset of kernel

epresentation without capturing the interrelationships among dif-

erent cognitive measures over the feature space. 

To overcome the weaknesses of the previous two methods, we

roject the original feature vectors to a high-dimensional space us-

ng multiple non-linear mapping functions for performing regres-

ion task in a nonlinear manner, and perform multi-task learning

n the multiple kernel space for modeling the disease’s cognitive

cores with a joint � 2 , 1 − � 1 sparsity-inducing regularizers. The as-

umptions of our model are that (1) only a small set of features are

redictive for all the prediction tasks in the feature space (RKHS),

2) only a small set of kernels are common across all the tasks.

or achieving this goal, an � 2,1 -norm is applied on the high di-

ensional features, to encourages all tasks to shared a common

et of the high dimensional features. Meanwhile a � 1 -norm is used

o look for kernels that are useful for all tasks by promoting use of

ew kernels. 

With the joint � 2 , 1 − � 1 sparsity-inducing regularizer, we cast

ur problem as the following optimization problem: 

in ̂ W , ξ

1 

2 

( 

k ∑ 

j=1 

( 

ˆ p j ∑ 

l=1 

‖ ̂

 w jl. ‖ 2 

) ) 2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. 

k ∑ 

j=1 

ˆ w 

T 
j.h φ j (x hi ) − y hi = ξti , h = 1 . . . t, i = 1 . . . n h 

(10)

The proposed multi-kernel framework utilizes tensor to capture

he relatedness among tasks and transfer knowledge through high

imensional features and kernels, which cannot be achieved by any

xisting MTL formulations. In our formulation, the square least loss

s chosen as the loss function. The above formulation can be easily

eneralized to other convex loss functions, such as ξ -insensitive

oss for regression or hinge loss for classification. 

emma 1. Let a i ≥ 0 , i = 1 . . . m . 

in 

{ 

m ∑ 

i =1 

a i 
λi 

: λi ≥ 0 , 

m ∑ 

i =1 

λi ≤ 1 

} 

= 

( 

m ∑ 

i =1 

a 
1 
2 

i 

) 2 

(11)
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nd the minimum is attained at 

i = 

a 
1 
2 

i ∑ m 

i =1 a 
1 
2 

i 

(12) 

roof. From the Cauchy–Schwarz inequality we have that 

 

i 

a 
1 
2 

i 
= 

∑ 

i 

a 
1 
2 

i 

λ
1 
2 

i 

λ
1 
2 

i 
≤

( ∑ 

i 

a i 
λi 

) 

1 
2 
( ∑ 

i 

λi 

) 

1 
2 

≤
( ∑ 

i 

a i 
λi 

) 

1 
2 

(13) 

Using the result of the Lemma 1 and introducing new variables

 = [ d 1 . . . d k ] 
T , we have: 

 

k ∑ 

j=1 

( 

p j ∑ 

l=1 

‖ ̂  w jl. ‖ 2 

) ) 2 

= min 

d∈S d 

k ∑ 

j=1 

(∑ p j 
l=1 

‖ ̂

 w jl. ‖ 2 

)2 

d j 
, (14) 

here S d := 

{ 

d ≥ 0 , 
∑ k 

j=1 d i = 1 

} 

. 

Again using the lemma and introducing new variables � =
 θ1 , θ2 , . . . , θk ] , where θ j = [ θ j1 . . . θ j ̂ p j 

] T , the regularizer can be

ritten as: 

 

ˆ p j ∑ 

l=1 

‖ ̂

 w jl. ‖ 2 

) 2 

= min 

θ j ∈S θ j 

ˆ w 

2 
jlh 

θ jl 

, (15) 

here S θ j 
:= 

{ 

θ jl ≥ 0 , 
∑ ˆ p j 

i =1 
θ jl ≤ 1 

} 

. 

According to the Eqs. (14) and (15) , we can rewrite the mixed

orm regularization on 

̂ W as: 

 

k ∑ 

j=1 

( 

ˆ p j ∑ 

l=1 

‖ ̂

 w jl. ‖ 2 

) ) 2 

= min 

d∈S d 
min 

θ j ∈S θ j 

t ∑ 

h =1 

k ∑ 

j=1 

ˆ p j ∑ 

l=1 

w 

2 
jlh 

θ jl d j 
. (16) 

�

The variable d is shared across all the tasks, indicating if a ker-

el is useful for any of the tasks. The d j in the d indicates the

eight of the j th kernel function, and the sparse of d indicates the

parse combination of kernels with � 1 -norm. The θ jl in � indicates

he influence of the j th kernel function to the l th feature. That is,

ur method not only assigns proper weight to each kernel function

y optimizing d , but also considers the influence of each kernel to

he high dimensional features in the feature space by optimizing

. 

Now we perform a variable transformation: 
ˆ w jlh √ 

θ jl d j 
= w̄ jlh , l =

 , . . . , d j , and let D j is a diagonal matrix with entries as θ jl d j , l =
 , . . . , ˆ p j . Then, we define D : 

 = 

[ 

D 1 

· · ·
D k 

] 

(17) 

Using this one can re-write the SMKMTL formulation as: 

in 

D 

t ∑ 

h =1 

min 

W̄ h , ξ

1 

2 

k ∑ 

j=1 

‖ w̄ j.h ‖ 

2 
2 + 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. 

k ∑ 

j=1 

w̄ 

T 
j.h D 

1 
2 

j 
φ j (x hi ) − y hi = ξhi , h = 1 . . . t , i = 1 . . . n h 

D j 
 0 , 

k ∑ 

j=1 

Tr (D j ) ≤ 1 , j = 1 . . . k 

(18) 
The primal formulation (18) can be seen as the following com-

osite objective optimization problem: 

in 

D 

J( D ) = 

t ∑ 

h =1 

J h ( D ) 

s.t. D j 
 0 , 

k ∑ 

j=1 

Tr (D j ) ≤ 1 , j = 1 . . . k 

(19) 

ith 

 h ( D ) = min 

W̄ h , ξ

1 

2 

k ∑ 

j=1 

‖ w̄ j.h ‖ 

2 
2 + 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. 

k ∑ 

j=1 

w̄ 

T 
j.h D 

1 
2 

j 
φ j (x hi ) − y hi = ξhi , i = 1 . . . n h 

(20) 

For each J h ( D ) , the Lagrange’s theorem is applied to incorpo-

ates the constraints into the objective by introducing nonnegative

agrangian multipliers α. The Lagrangian can be written as: 

 h = 

1 

2 

k ∑ 

j=1 

‖ w̄ j.h ‖ 

2 
2 + 

λ

2 

n h ∑ 

i =1 

ξ 2 
hi 

+ 

n h ∑ 

i =1 

αhi 

( 

k ∑ 

j=1 

w̄ 

T 
j.h D 

1 
2 

j 
φ j (x hi ) − y hi − ξhi 

) 

(21) 

We get: 

¯
 

∗
j.h = −αT 

h D j �h j (22a) 

∗
hi = 

αhi 

λ
(22b) 

here �h j = [ φ j (x h 1 ) , . . . , φ j (x hn h 
)] is the data matrix of the h th

ask in the j th feature space. Again, we substitute the above ex-

ressions for x i and w̄ . Thus, we derive the following associated

ual problem: 

 h ( D ) = max 
αh 

−αT 
h y t −

1 

2 

αT 
h 

( 

k ∑ 

j=1 

�T 
h j D j �h j 

) 

αh −
1 

2 C 
αT 

h αh 

= max 
αh 

−αT 
h y t −

1 

2 

αT 
h G h ( D ) αh −

1 

2 C 
αT 

h αh 

s.t. D 
 0 , Tr ( D ) ≤ 1 

(23) 

here 

 h ( D ) = 

k ∑ 

j=1 

�T 
h j D j �h j = 

k ∑ 

j=1 

d j G h j (24)

nd G hj is called weighted Gram matrix of the h -task with the j -

ernel, which is defined as: 

 h j (m, n ) = 

√ 

θ j φ j (x hm 

) ·
√ 

θ j φ j (x hn ) (25)

here θ j = [ θ j1 , θ j2 , . . . , θ j ̂ p j 
] . 

Our objective function can be transformed into a form similar

o that in the MKL formulation in Eq. (6) . The differences are: (1) t

VR tasks shared the same matrix D in our SMKMTL, whereas in

 2,1 MKMTL the vector d is shared in t SVR tasks; (2) The K j in

 2,1 MKMTL is a Gram matrix, where each item is the similarity of

wo instances, whereas G j in our SMKMTL is weighted Gram ma-

rix, each item in which is the weighted similarity of two instances

ith a weight vector θj . 
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4.2. Optimization 

The optimization of � 2,1 SMKMTL is to learn the optimal regres-

sion weight of each SVR task and a shared parameter D̄ among the

tasks simultaneously. To solve the formulation in Eq. (19) , we em-

ploy an alternating minimization procedure, in which D̄ is held fix

and optimize αh independently for each task (we call it α-step),

and similarly fix αh in each task and optimize D̄ shared across

these tasks(we call it D̄ -step). This section describes how to solve

the optimization problem for our proposed framework. 

1. The αh -step 

The optimization of problem (10) with respect to αh consists

in solving t single-task SVR problems while keeping the matrix

D̄ fixed. The difficulty in working with this formulation is that

the explicit mappings φj s are required. We now describe a way

of overcoming this problem and efficiently kernelizing the formu-

lation. Let � j ≡ [ �1 j . . . �t j ] ∈ R ̂

 p ×n and the compact SVD of �j be

P j 	 j Q 

T 
j 
. Then, K j = �T 

j 
� j = Q j 	

2 
j 
Q 

T 
j 
. We can obtain the Q j and 	j 

by the Gram matrix. Now, introduce new variables D̄ j such that

D̄ j = P j D j P 

T 
j 
. Here, D̄ j ∈ R 

n ×n is a symmetric positive semidefinite

matrix (PSD) of size same as rank of �j . The objective function

is: 

min 

D̄ 
0 , Tr ( ̄D ) ≤1 
J( ̄D ) = 

t ∑ 

h =1 

J h ( ̄D ) (26)

with 

J h ( ̄D ) = max 
αh 

−αT 
h y t −

1 

2 

αT 
h 

( 

k ∑ 

j=1 

�T 
h j D j �h j 

) 

αh −
1 

2 C 
αT 

h αh 

= max 
αh 

−αT 
h y t −

1 

2 

αT 
h 

( 

k ∑ 

j=1 

�T 
h j P j ̄D j P 

T 
j 

) 

αh −
1 

2 λ
αT 

h αh 

= max 
αh 

−αT 
h y t −

1 

2 

αT 
h 

( 

k ∑ 

j=1 

�T 
h j � j Q 

T 
j 	

−1 
j 

D̄ j 	
−1 
j 

Q j �
T 
j �h j 

) 

αh −
1 

2 λ
αT 

h αh 

= max 
αh 

−αT 
h y t −

1 

2 

αT 
h 

( 

k ∑ 

j=1 

Q 

T 
h j D̄ j Q h j 

) 

αh −
1 

2 λ
αT 

h αh , (27)

where Q h j = 	−1 
j 

Q 

T 
j 
�T 

j 
�h j , and the calculation of Q hj does not re-

quire the kernel-induced features explicitly since �T 
j 
�h j can be

solved by kernel trick. 

With the 
∑ k 

j=1 Q 

T 
h j 

D̄ j Q h j , the objective function of each task J h 

can be obtained by any SVR algorithm. 

2. The D̄ -step 

Eq. (27) can be written as: 

J h ( ̄D ) = max 
αh 

−αT 
h y t −

1 

2 

Tr ( B ̄D ) − 1 

2 λ
αT 

h αh 

= − αT ∗
h y t − 1 

2 

Tr ( B ̄D ) − 1 

2 λ
α∗T 

h α
∗
h 

= β∗
h −

1 

2 

Tr ( B ̄D ) 

(28)

where β∗
h 

= −α∗T 
h 

y h − 1 
2 λ

α∗T 
h 

α∗
h 
, and B is a block diagonal matrix

with entries B j = Q h j α
∗
h 
α∗T 

h 
Q 

T 
h j 

. 

With the parameters β∗
h 

of each SVR model obtained, the D̄ -

step is to solve the following optimization problem: 

min 

D̄ ∈S D̄ 
J( ̄D ) (29)
o

here J( ̄D ) = 

∑ t 
h =1 β

∗
h 

− 1 
2 Tr ( B ̄D ) , S D̄ 

:= 

{
D̄ 
 0 , Tr ( ̄D ) ≤ 1 

}
.

he set S is called the Spectrahedron, and can be seen as a

eneralization of the unit simplex to symmetric matrices. 

Therefore, the optimization of (29) is a convex optimization

roblem over the spectrahedron of PSD matrices. Minimizing a

onvex function over the spectrahedron is an important optimiza-

ion problem with many applications in machine learning. A stan-

ard method to solve the problem is the projected gradient projec-

ion algorithm, which generates iteratively the sequence 

{ 

D̄ 

(m ) 
}

ia 

¯
 

(t+1) = �S D̄ ( ̄D 

(m ) − s k ∇J( ̄D )) = arg min D̄ 

D̄ 

T ∇J( ̄D ) 

+ 

1 

2 

∥∥∥D̄ − D̄ 

(m ) 
∥∥∥2 

2 
, (30)

here s k a stepsize, and �S D̄ ( ̄D ) is the Euclidean projection onto

 D̄ 

. 

In the procedure of projected gradient descent, the projec-

ion of PSD matrices requires the computation of a complete

igenvalue-decomposition, which is a costly step [44] . An alter-

ative is the conditional gradient method (aka Frank–Wolfe algo-

ithm) [44–46] considers the linearization of the objective func-

ion, and moves towards a minimizer of this linear function in each

teration. Specifically, it involves two steps in each iteration: 

ompute v (m ) := argmax v ′ ∈ S 
〈
v ′ , −∇ f (x (m ) ) 

〉
pdate x (t+1) := (1 − γ ) x (m ) + γ v (m ) 

(31)

At a current position x ( m ) , the algorithm considers the lineariza-

ion of the objective function, and moves towards a minimizer of

his linear function, v ( m ) . Then, v ( m ) is chosen as the next step-

irection. 

emma 2. For any symmetric matrix A ∈ S n + , it holds that 

max 
∈ S n + 

〈 X , A 〉 = λmax (A ) (32)

For the optimization over the spectrahedron of PSD matrices,

rank–Wolfe algorithm simply requires a largest eigenvector com-

utation instead of a complete SVD per iteration instead of the

ostly projection step according to Lemma 2 proposed in [44] ,

hich is much more efficient. Let v := ApproxEV ( A , ξ ) is an ap-

roximate eigenvalue solver to relax the requirement of exactly

olving the linearized problem in each step, the function of Ap-

roxEV ( A , ξ ) return a unit length vector v such that v T A v ≥
max (A ) − ξ . It approximates the maximum eigenvector to matrix

 with the desired accuracy ξ . According to the Lemma 2 , v ap-

roximates the linearized problem, that is 

 

T A v = 

〈
v v T , A 

〉
≥ λmax (A ) − ξ , (33)

Here, the Lanczos’algorithm [47] is used as the ApproxEV.

 

(m ) = v (m ) v (m ) T is the best descent direction on the linear ap-

roximation to J ( ·) at D̄ 

(m ) 
. During the optimization procedure, the

lgorithm considers the linearization of the objective function at

 current position D̄ 

(m ) 
, and moves towards a minimizer of this

inear function by the approximate function of ApproxEV over the

omain of S n + . For our convex optimization problem over the spec-

rahedron, the procedure consists of the two steps as below: 

Compute v (m ) : = ApproxEV (∇J(−D̄ 

(m ) 
) , ξ (m ) ) , ξ (m ) = 

C f 

m 

2 

pdate D̄ 

(m +1) 
: = (1 − ηt ) ̄D 

(m ) + ηt V 

(m ) , 

V 

(m ) = v (m ) v (m ) T , η = min 

{ 

1 , 
2 

m 

} 

, (34)

here ∇J( ̄D 

(m ) 
) = − 1 

2 B , C f is a curvature constant, the assump-

ion of which is similar to a Lipschitz assumption on the gradient

f f, η is a step-size. 



P. Cao et al. / Pattern Recognition 79 (2018) 195–215 201 

Fig. 3. The � 2,1 norm regularized multi-task learning with different schemes with respect to working space, common representation and regularization. 
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Instead of using the pre-defined step-sizes, we find the optimal

oint η ∈ [0, 1] on the line segment between the current iterate D̄ 

nd V 

( m ) to improve the numerical stability as follow: 

m 

:= arg min ηm ∈ [0 , 1] J( ̄D 

(m ) + ηm 

(V 

(m ) − D̄ 

(m ) 
)) (35) 

The detailed algorithm is summarized in Algorithm 1 . Given D̄ ,

lgorithm 1 The two step alternative optimization of

 2 , 1 − � 1 SMKMTL. 

nput: Training Data X and Y , regularization parameters λ
utput: α∗ and D̄ 

1: Initialize D̄ 

(0) = v 0 v T 0 (with trace one), m = 1 ; 

2: repeat 

3: for h = 1 to t do 

4: With fixed D̄ , compute α∗
h 

by using an SVR solver 

5: end for 

6: Compute β∗ = −α∗T 
h 

y t − 1 
2 λ

α∗T 
h 

α∗
h 

7: ξ (m ) = 

C f 

m 

2 

8: Compute v (m ) := ApproxEV (−∇J( ̄D 

(m ) 
, ξ (m ) ) 

9: V 

(m ) = v (m ) v (m ) T 

10: Calculate ηm 

:= arg min ηm ∈ [0 , 1] J( ̄D + ηm 

(V 

(m ) − D̄ 

(m ) 
)) 

11: Update D̄ 

(m +1) 
:= (1 − ηm 

) ̄D 

(m ) + ηm 

V 

(m ) 

12: m = m + 1 

13: until convergence criterion is satisfied 

he problem is equivalent to solving t SVR problems J h ( ̄D ) indi-

idually. The D̄ are learnt using Frank-Wolfe optimization and are

hared across the tasks. 

.3. Connection to the existing methods 

In this section, our aim is to review the popular � 2,1 -norm reg-

larized MTL methods to deal with this problem, as well as to

resent a taxonomy where these techniques can be categorized de-

ending on three dimensions: space, common representation and

egularization. Fig. 3 shows the proposed taxonomy. 

Following the taxonomy, the introduced algorithms are distin-

uished into four families: 

1. Linearized MTL (e.g. � 2,1 MTL): only focuses on the exploitation

f shared representation with respect to the MRI features in the

riginal input space. 

2. Single-kernel based MTL (e.g. CORNLIN): maps the original fea-

ures into a high order features by a specific polynomial kernel

unction, and learn the relevant features by considering the intra-

lock correlations with � 2,1 -norm. 

3. Multi-kernel based MTL with kernel-wise correlation (e.g.

 2,1 MKMTL): is a simple extension of the standard MKL to the case

f multiple tasks. The method impose an � 2,1 norm on the kernel

eights, to learn a optimal kernel combination suited for all the

iven tasks. 

4. Multi-kernel based MTL with both feature-wise and kernel-wise

orrelation (e.g. � 2 , 1 − � 1 SMKMTL): assumes a common high di-
ensional features in the kernel space and kernel representation

re shared simultaneously across the tasks. 

The first two families belong to the multi-task learning with

eature representation sharing. However, the limitations of them

re that � 2,1 MTL neglects the inherently nonlinear relationship be-

ween MRI and cognitive outcomes, and CORNLIN only considers

ne fixed kernel mapping and ignores the kernel selection. Hence,

t is necessary to employ multiple kernels for multiple tasks. The

hird family belongs to the MTL with model parameter sharing by

odeling only individual kernel-wise correlation. It neglects the

orrelation among multiple related tasks in the feature space. By

ontrast, our MTL model with kernel-wise and feature-wise corre-

ation can learn the common representation (features and kernel

arameters) shared across tasks, so as to maximize task related-

ess. 

Fig. 4 shows the difference of the schematic diagram of these

amilies, and Fig. 5 illustrates the difference of regularization

nd space. The first three families only employ the � 2,1 -norm on

he features or kernel parameters. On the contrary, the proposed

ixed sparsity-inducing norms emphasize structured sparsity from

oth kernel-wise and feature-wise in kernel induced space, to cap-

ure the kernel-wise relationships among multiple tasks without

gnoring the feature-wise correlation within each kernel space. To

he best of our knowledge, there is no sparsity-based algorithms

xploiting both the high dimensional feature-wise and the kernel-

ise correlation. 

.4. Extension of � 2 , 1 − � 1 SMKMTL 

Our proposed SMKMTL is a general framework. In this section,

e extend the formulation to (1) classification model by displacing

he loss with hinge loss; and (2) more choices of regularizers with

ifferent choice of kernel setting. 

1. Extension to classification 

Any suitable loss function can be used in the formulation (10) ,

uch as hinge loss for classification problems. In recent years, there

as been a great interest in developing classification models to

dentify clinical labels such as AD, MCI, and Normal Control (NC).

he modified primal formulation of classification is: 

in 

̂ W , ξ

1 

2 

( 

k ∑ 

j=1 

( 

ˆ p j ∑ 

l=1 

‖ ̂

 w jl. ‖ 2 

) ) 2 

+ 

λ

2 

T ∑ 

t=1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. y hi 

( 

k ∑ 

j=1 

ˆ w 

T 
h j φ j (x hi ) + b 

) 

≥ 1 − ξhi , h = 1 . . . t, i = 1 , . . . , n h 

(36) 

2. Extension to other kernel setting 

Besides the above two variant methods, any other choices of

ernel setting will derive into new formulations for SMKMTL. Dif-

erent choices of kernel setting lead to different regularizers. We

resent several variations of SMKMTL, and we investigate their

erformance empirically. It is easy to see that some simple vari-

nt can induce several well-known algorithms 
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Fig. 4. The schematic diagram of the four MTL frameworks. 
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(i) Multi-kernel single task learning: 

The objective function can be written as follows: 

min ̂ W , ξ

1 

2 

( 

k ∑ 

j=1 

‖ ̂

 w j ‖ 2 

) 2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. 

k ∑ 

j=1 

ˆ w 

T 
j φ j (x i ) − y i = ξi , i = 1 . . . n 

(37)

which is equivalent to the traditional multi-kernel regression

model in [48] . 

(ii) Single-kernel multi-task learning with nonlinear kernel

mapping: 

When the amount of kernel is reduced to single one, the opti-

mization problem in Eq. (10) is re-defined as: 

min 

̂ W , ξ

1 

2 

( 

ˆ p ∑ 

l=1 

‖ ̂

 w l. ‖ 2 

) 2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. ˆ w 

T 
.h φ(x hi ) − y hi = ξti , h = 1 . . . t, i = 1 . . . n 

(38)

The method is named as � 2,1 KMTL. In the special case where

the linear kernel is used, the formulation becomes: 

min 

W , ξ

1 

2 

( 

p ∑ 

l=1 

‖ w l. ‖ 2 

) 2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. w 

T 
.h x hi − y hi = ξhi , h = 1 . . . t, 

(39)

which reduce to the linearized � 2,1 MTL. 

(iii) Multi-kernel multi-task learning with feature-wise kernel: 

We propose to apply the kernel function on each single fea-

ture. In this way, we can select the features that contribute most

to constructing a better prediction model through � regularization
1 
n the kernels’ weight vector. 

in 

̂ W , ξ

1 

2 

( 

p ∑ 

j=1 

( 

ˆ p j ∑ 

l=1 

‖ ̂

 w jl. ‖ 2 

) ) 2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
hi 

s.t. 

k ∑ 

j=1 

ˆ w 

T 
j.h φ j (x hi ) − y hi = ξti , h = 1 . . . t, i = 1 . . . n h 

(40)

(iv) Multi-kernel multi-task learning with ROI-wise kernel: 

In our data, multiple specific geometric features (volume, area

nd thickness) are extracted to describe the same ROI in the brain,

eading to that features exhibit certain intrinsic group structures.

ur previous study proposed a prior knowledge guided multi-task

eature learning model, using the group information to enforce the

ntra-group similarity, has been demonstrated the multiple shape

easures tend to be selected together as joint predictors [41] . It is

esired to explore and utilize such interrelation structures and se-

ect these important and structurally correlated features together. 

Based on the above motivation, each individual ROI (brain re-

ion) is associated with a specific kernel function, thus, there is a

otal of g base kernels ( g : the number of ROIs). For AD, the num-

er of features in each group is 1 or 4, and the number of groups

 can be in the hundreds. Let x ′ 
i 
= [ x (1) 

i 
, x (2) 

i 
, . . . , x 

(g) 
i 

] , where x ( c )

ndicates the c th representation of x from the c th ROI. 

in 

ˆ w , ξ

1 

2 

( 

g ∑ 

j=1 

( 

ˆ p j ∑ 

l=1 

‖ ̂

 w jl. ‖ 2 

) ) 2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
ti 

s.t. 

g ∑ 

j=1 

ˆ w 

T 
j.h φ j (x ′ hi ) − y hi = ξhi , h = 1 . . . t, i = 1 . . . n h 

(41)
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Fig. 5. The different sparsity-inducing norms of the four � 2,1 -norm regularized MTL families. 
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In the special case where the linear kernel is used, the formu-

ation becomes: 

in 

ˆ w , ξ

1 

2 

( 

g ∑ 

j=1 

‖ w j. ‖ 2 

) 2 

+ 

λ

2 

t ∑ 

h =1 

n h ∑ 

i =1 

ξ 2 
ti 

s.t. 

g ∑ 

j=1 

w 

T 
j.h x 

′ 
hi − y hi = ξhi , h = 1 . . . t, 

(42) 

here w j . is a submatrix with 4 or 1 rows and h columns. 

. Experiment 

In this experiment we evaluated the effectiveness of our pro-

osed � 2 , 1 − � 1 norm regularized SMKMTL algorithm. Around our

esearch problem, we consider the following questions in our anal-

sis, which are also the contributions of this paper: (1) What is the

erformance of the nonlinear method compared with the linear

 2,1 -norm MTL, the nonlinear � 2,1 MKMTL and other MTL methods

ith different assum ption? No previous studies have systematically
nd extensively examined the prediction performance by linearized

TL and nonlinear kernelized MTL methods with the same � 2,1 -

orm. (2) How to nonlinearly identify the relevant biomarkers by

he multi-kernel based methods? (3) How is the learning capacity

f the multi-kernel framework on fusing multi-modality data? To

nvestigate these questions, we first perform extensive experimen-

al analysis to evaluate the performance of our proposed � 2 , 1 − � 1 
orm regularized SMKMTL. 

.1. Dataset and parameter settings 

.1.1. Dataset 

In ADNI, all participants received 1.5 Tesla (T) structural MRI.

he MRI features used in our experiments are based on the

maging data from the ADNI database processed by a team from

CSF (University of California at San Francisco), who performed

ffine registration, B1 bias correction, skull stripping and volu-

etric alignment with the FreeSurfer image analysis suite ( http:

/surfer.nmr.mgh.harvard.edu/ ) according to the atlas generated in

49] . During the MRI preprocessing, an iterative algorithm is per-

http://surfer.nmr.mgh.harvard.edu/
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formed to compute the probabilities of each voxel until the prob-

abilities do not change between two consecutive iterations. To-

tally, 48 cortical regions and 44 subcortical regions are generated.

For each cortical region, the cortical thickness average (TA), stan-

dard deviation of thickness (TS), surface area (SA) and cortical vol-

ume (CV) were calculated as features. For each subcortical region,

subcortical volume was calculated as features. The SA of left and

right hemisphere and total intracranial volume (ICV) were also in-

cluded. This yielded a total of p = 319 MRI features extracted from

cortical/subcortical ROIs in each hemisphere. (including 275 cor-

tical and 44 subcortical features from 115 brain ROI totally, see

Table S1). Details of the analysis procedure are available at http:

//adni.loni.ucla.edu/research/mri- post- processing/ . 

The ADNI project is a longitudinal study, where selected

subjects are categorized into three baseline diagnostic groups:

Cognitively Normal (CN), Mild Cognitive Impairment (MCI), and

Alzheimer’s Disease (AD), repeatedly over a 6-month or 1-year in-

terval. The date when the subjects are scheduled to perform the

screening becomes baseline (BL) after approval and the time point

for the follow-up visits is denoted by the duration starting from

the baseline. In this work, we further performed the following pre-

processing steps: 

• remove features with more than 10% missing entries (for all pa-

tients and all time points); 
• remove the ROI whose name is unknown; 
• remove the instances with missing value of cognitive scores; 
• exclude patients without baseline MRI records; 
• complete the missing entries using the average value. 

The preprocessing steps yield a total of n = 788 subjects, who

are categorized into 3 baseline diagnostic groups: Cognitively Nor-

mal (CN, n 1 = 225 ), Mild Cognitive Impairment (MCI, n 2 = 390 ),

and Alzheimer’s Disease (AD, n 3 = 173 ). 

Ten widely used clinical/cognitive assessment scores [5,6] were

employed in this study, including Alzheimer’s Disease Assessment

Scale cognitive total score (ADAS), Mini Mental State Exam score

(MMSE), Rey Auditory Verbal Learning Test (RAVLT) involving Total

score of the first 5 learning trials (TOTAL), Trial 6 total number of

words recalled(TOT6), 30 minutes delay score (T30) and 30 min

delay recognition score (RECOG), FLU involving Animal Total score

(ANIM) and Vegetable Total score (VEG), and TRAILS including Trail

Making test A score and B score. 

5.1.2. Parameter settings 

Following the settings of previous MKL studies, the candi-

date kernels are: six different kernel bandwidths ( 2 −2 , 2 −1 , . . . , 2 3 ),

polynomial kernels of degree 1–3, and a linear kernel, which to-

tally yields 10 kernels. All these kernels are applied on all the fea-

tures. Each base kernel matrices were pre-computed and normal-

ized to have unit trace. Moreover, we take advantage of warm-start

techniques for successive SVR retrainings. The gradient based ap-

proach produces estimates of D̄ on a smooth trajectory, so that

the previous SVR solution provides a good guess for the current

SVR training. 

The training instances are normalized to be of zero mean and

unit variance, and the test instances are also normalized using the

same mean and variance of the training data. We use 10-fold cross

valuation to evaluate our model and conduct the comparison. In

each of trials, a 5-fold nested cross validation procedure for all

the comparable methods in our experiments is employed to tune

the regularization parameters. The regularization parameter of λ
is chosen by nested cross-validation strategy on the training data

(trying values 10 −2 , 10 −1 , . . . , 10 2 , 10 3 ) in this study. The reported

results were the best results of each method with the optimal

parameter. Data was z-scored before applying regression meth-

ods. For the quantitative performance evaluation, we employed the
etrics of Correlation Coefficient (CC) and Root Mean Squared Er-

or (rMSE) between the predicted clinical scores and the target

linical scores for each regression task. Moreover, to evaluate the

verall performance on all the tasks, the normalized mean squared

rror (nMSE) [11,17] and weighted R-value (wR) [50] are used. The

MSE and wR are defined as follows: 

MSE 

(
Y , ˆ Y 

)
= 

∑ t 
h =1 

‖ Y h − ˆ Y h ‖ 2 2 

σ (Y h ) 

n 

, (43)

R 

(
Y , ˆ Y 

)
= 

∑ t 
h =1 Corr (Y h , ˆ Y h ) n h 

n 

, (44)

here Y and 

ˆ Y are the ground truth cognitive scores and the pre-

icted cognitive scores, respectively. 

A smaller (higher) value of nMSE and rMSE (CC and wR) repre-

ent better regression performance. We report the mean and stan-

ard deviation based on 10 iterations of experiments on different

plits of data for all comparable experiments. 

.2. Experiment I: the comparison with the baseline methods 

In this section, we conduct empirical evaluation for the pro-

osed methods by comparing with three single task learning meth-

ds: Lasso, Ridge and MKL, all of which are applied indepen-

ently on each task. Moreover, we compare our method with lin-

ar � 2,1 MTL and one variation of our � 2 , 1 − � 1 SMKMTL, � 2,1 KMTL

single-kernel multi-task learning with � 2,1 -norm) as the base-

ine comparable method. Moreover, we compare the state-of-the-

rt nonlinear multi-task learning methods, including � 2,1 MKMTL in

27] and CORNLIN in [5] , which are closest in spirit with our pro-

osed model. The average and standard deviation of performance

easures are calculated by 10 fold cross validation, and are shown

n Table 1 . It is worth noting that we use the same training and

esting data across the experiments for all the methods for fair

omparison. 

Experimental results are reported in Table 1 where the best re-

ults are boldfaced. Additionally, a statistical analysis is performed

n the results of nMSE and wR and reported in Table 1 . As can

e seen, our proposed method achieves statistically significant re-

ults compared to all other methods on most of the results. These

esults reveal several interesting points: 

(1) All the compared multi-task learning methods ( � 2,1 MTL,

KMTL and � 2 , 1 − � 1 SMKMTL) improve the predictive per-

formance over the independent regression algorithms(Ridge,

Lasso and MKL). This justifies the motivation of learning

multiple tasks simultaneously, and verifies that the tasks

are not independent and capturing their relatedness can im-

prove learning performance. 

(2) Additionally, the proposed � 2 , 1 − � 1 SMKMTL achieved the

highest prediction performance with respect to nMSE and

CC, which demonstrates that using the nonlinear model reg-

ularized with the mixed norm has the potential to better

capture the complex relationship between brain structure

and cognitive decline, and the representation involving fea-

tures and kernels shared by tasks are effectively captured by

the mixed sparsity inducing norm. 

(3) Compared with linearized regression model, regardless of

single task learning or multi-task learning, kernelized re-

gression model achieve better performance at the most

cases, which demonstrates that this relationship between

predictors (the MRI measures) the responses (cognitive

scores) is nonlinear. It also means that the cognitive scores

are derived from the high-order of original MRI features

or interactions between features. The results show that the

http://adni.loni.ucla.edu/research/mri-post-processing/
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Table 1 

Performance comparison of various methods in terms of rMSE, CC, nMSE and wR on ten cognitive prediction tasks. The best results are bolded, and superscript symbols ∗

indicates that � 2 , 1 − � 1 SMKMTL significantly outperformed that method on that score in terms of nMSE or wR. Student’s t -test at a level of 0.05 was used. 

Task Metric Ridge Lasso SVR MKL � 2,1 KMTL � 2,1 MTL � 2,1 MKMTL CORNLIN � 2 , 1 − � 1 SMKMTL 

ADAS rMSE 7.55 ± 0.29 6.84 ± 0.36 7.12 ± 0.59 6.89 ± 0.52 6.91 ± 0.31 6.94 ± 0.43 6.91 ± 0.54 7.81 ± 0.68 6.80 ± 0.44 

CC 0.60 ± 0.03 0.65 ± 0.03 0.63 ± 0.07 0.65 ± 0.03 0.62 ± 0.01 0.66 ± 0.04 0.64 ± 0.01 0.49 ± 0.14 0.69 ± 0.02 

MMSE rMSE 2.65 ± 0.13 2.21 ± 0.09 2.24 ± 0.17 2.21 ± 0.15 2.19 ± 0.11 2.36 ± 0.17 2.21 ± 0.15 2.36 ± 0.17 2.37 ± 0.19 

CC 0.41 ± 0.04 0.53 ± 0.04 0.54 ± 0.03 0.54 ± 0.05 0.51 ± 0.02 0.56 ± 0.06 0.53 ± 0.06 0.42 ± 0.11 0.57 ± 0.05 

TOTAL rMSE 11.41 ± 0.50 10.02 ± 0.55 9.97 ± 0.58 9.91 ± 0.69 9.73 ± 0.51 9.61 ± 0.45 9.82 ± 0.53 10.25 ± 0.70 9.82 ± 0.77 

CC 0.40 ± 0.08 0.49 ± 0.08 0.45 ± 0.04 0.50 ± 0.06 0.53 ± 0.03 0.53 ± 0.08 0.49 ± 0.06 0.42 ± 0.13 0.59 ± 0.07 

TOT6 rMSE 3.91 ± 0.24 3.32 ± 0.19 3.53 ± 0.32 3.42 ± 0.30 3.29 ± 0.34 3.34 ± 0.15 3.46 ± 0.23 3.51 ± 0.27 3.11 ± 0.19 

CC 0.36 ± 0.09 0.51 ± 0.10 0.50 ± 0.12 0.48 ± 0.10 0.55 ± 0.13 0.50 ± 0.11 0.43 ± 0.08 0.39 ± 0.16 0.55 ± 0.10 

T30 rMSE 4.05 ± 0.22 3.44 ± 0.18 3.62 ± 0.37 3.57 ± 0.34 3.55 ± 0.32 3.44 ± 0.15 3.53 ± 0.16 3.72 ± 0.29 3.42 ± 0.20 

CC 0.38 ± 0.10 0.52 ± 0.10 0.44 ± 0.12 0.51 ± 0.10 0.52 ± 0.15 0.52 ± 0.10 0.48 ± 0.09 0.37 ± 0.14 0.53 ± 0.10 

RECOG rMSE 4.33 ± 0.29 3.64 ± 0.21 3.79 ± 0.22 3.74 ± 0.24 3.69 ± 0.18 3.72 ± 0.25 3.67 ± 0.21 3.77 ± 0.26 3.68 ± 0.18 

CC 0.26 ± 0.08 0.42 ± 0.09 0.40 ± 0.07 0.39 ± 0.07 0.43 ± 0.15 0.40 ± 0.09 0.40 ± 0.09 0.33 ± 0.14 0.52 ± 0.08 

ANIM rMSE 6.52 ± 0.42 5.35 ± 0.45 5.39 ± 0.40 5.34 ± 0.51 5.28 ± 0.44 5.30 ± 0.44 5.39 ± 0.37 5.45 ± 0.25 5.38 ± 0.64 

CC 0.18 ± 0.09 0.37 ± 0.10 0.34 ± 0.16 0.37 ± 0.07 0.39 ± 0.02 0.38 ± 0.07 0.35 ± 0.07 0.31 ± 0.13 0.39 ± 0.07 

VEG rMSE 4.32 ± 0.18 3.70 ± 0.09 3.88 ± 0.20 3.76 ± 0.14 3.56 ± 0.12 3.70 ± 0.09 3.71 ± 0.10 3.91 ± 0.16 3.55 ± 0.19 

CC 0.40 ± 0.07 0.51 ± 0.06 0.42 ± 0.09 0.50 ± 0.07 0.57 ± 0.13 0.57 ± 0.06 0.50 ± 0.06 0.39 ± 0.11 0.59 ± 0.05 

TR-A rMSE 27.18 ± 1.70 23.75 ± 1.40 24.77 ± 1.86 24.71 ± 1.78 23.91 ± 1.95 23.42 ± 1.09 23.71 ± 1.64 24.23 ± 1.84 23.05 ± 1.69 

CC 0.29 ± 0.10 0.36 ± 0.04 0.32 ± 0.11 0.37 ± 0.06 0.38 ± 0.08 0.40 ± 0.05 0.39 ± 0.07 0.29 ± 0.17 0.44 ± 0.06 

TR-B rMSE 83.72 ± 5.71 71.23 ± 2.81 78.87 ± 6.56 78.01 ± 6.92 67.53 ± 6.44 71.32 ± 2.93 72.67 ± 4.05 73.03 ± 4.91 68.99 ± 1.21 

CC 0.33 ± 0.11 0.47 ± 0.10 0.44 ± 0.04 0.46 ± 0.06 0.47 ± 0.12 0.47 ± 0.10 0.50 ± 0.08 0.40 ± 0.10 0.51 ± 0.09 

nMSE 16.44 ± 1.72 ∗ 12.05 ± 0.76 ∗ 14.47 ± 1.20 ∗ 13.56 ± 1.13 ∗ 12.28 ± 1.09 ∗ 11.90 ± 0.94 ∗ 12.30 ± 0.65 ∗ 12.84 ± 1.19 ∗ 10.02 ± 0.34 

wR 0.36 ± 0.04 ∗ 0.48 ± 0.05 ∗ 0.45 ± 0.07 ∗ 0.48 ± 0.05 ∗ 0.49 ± 0.04 ∗ 0.49 ± 0.05 ∗ 0.47 ± 0.03 ∗ 0.38 ± 0.12 ∗ 0.61 ± 0.03 
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Table 2 

The performance of � 2 , 1 − � 1 SMKMTL with respect to the kernel scheme (All 

or ROI) and kernel function. 

Kernel setting Kernel type Kernel size nMSE wR 

ALL RBF 6 10.55 ± 0.26 0.57 ± 0.06 

Polynomial 3 11.07 ± 0.24 0.45 ± 0.02 

Linear 1 11.01 ± 0.31 0.48 ± 0.04 

Hybrid 10 10.02 ± 0.34 0.61 ± 0.03 

ROI Linear 115 9.81 ± 0.26 0.66 ± 0.03 

RBF 115 9.83 ± 0.39 0.59 ± 0.04 

Polynomial 115 10.55 ± 0.45 0.51 ± 0.12 
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nonlinear models have the ability to capture the relation-

ship while the linearized models would not be able to de-

tect such non-linear predictive information, thereby leading

to limited predictive performance. 

(4) With the same � 2,1 regularization to model correlation of

tasks in the feature space, SMKMTL outperforms � 2,1 KMTL. It

indicates that employing multiple base kernels is beneficial

in the case of multiple tasks. 

(5) we observe that � 2 , 1 − � 1 SMKMTL obtains a better perfor-

mance compared with the two nonlinear MTL methods. The

results show that while � 2,1 MKMTL improves over single-

task learning, it suffers by requiring all tasks to share ker-

nels, which may not a good solution to build the related-

ness among the tasks. The � 2,1 MKMTL method only consid-

ers the common kernel representation while not being able

to take into account the feature representation. It indicates

that simply modeling relatedness based on shared kernel is

insufficient. Moreover, � 2 , 1 − � 1 SMKMTL shows superiority

over CORNLIN which indicates the importance of incorpo-

rating multi-kernel framework for nonlinearly modeling the

relationship. performance of kernelized MTL methods. Both

of the two nonlinear kernelized MTL methods consider that

tasks to be learned share a common subset of kernel rep-

resentation or a common subset of the nonlinear features

in RKHS by mapping with polynomial kernel function. The

result demonstrate the advantages of the proposed multi-

kernel multi-task learning by capturing the correlations be-

tween tasks from the features representation and kernel rep-

resentation simultaneously in the tasks of prediction cogni-

tive outcomes. It also suggests that modeling task related-

ness using more representation and embedding the appro-

priate sparsity-inducing norm into the multi-task learning

can improve the performance. 

We also show the scatter plots of actual values versus predicted

alues for the score of ADAS, MMSE RAVLT-TOTAL and FLU-VEG on

esting data of 10-fold cross validation in Fig. 6 . 

.3. Experiment II: kernel setting 

Many empirical studies have shown that the choice of kernel

ften affects the resulting performance of a kernel method signif-
cantly. To evaluate the influence of kernel setting in the SMKMTL

odel, we investigate the performance with respect to different

ernel setting involving kernel scheme, kernel type and kernel reg-

larization. Prediction performance results, measured by nMSE and

R of � 2 , 1 − � 1 SMKMTL. 

In this section, we employ a wide variety of kernels to evalu-

te the performance of multi-kernel framework and investigate the

roposed variant of our method. There are two choice in the ker-

el setting: All-scheme and ROI-scheme. In the All-scheme, all the

ernel matrix is calculated on the whole set of features; while in

he ROI-scheme or ROI-wise kernel, each ROI generates one kernel

atrix with the specific features within this group through kernel

unctions, which totally yields g kernels ( g = 115 is the number of

OI, please see Table S1). The ROI-scheme can result in sparsity

n terms of ROI since each kernel corresponds to each ROI. In the

bove experiment, the All-scheme was chosen. 

The result is shown in Table 2 , and we found � 2 , 1 − � 1 SMKMTL

s sensitive with respect to kernel setting. The ROI-scheme consis-

ently outperform the ones ALL-scheme at the most cases, which

as expected, as (1) more kernel functions carry sufficient infor-

ation, and (2) many ROIs are not informative, ROI-scheme is ca-

able of select the discriminative ROIs, making the results easier

o interpret. Moreover, besides the hybrid kernel, RBF achieve best

erformance while polynominal kernel clearly has the worst re-

ult in the ALL-scheme. In the ROI-scheme, the linear kernel is the

est. The result indicates that the kernel setting in the proposed

ethods is very crucial for multi-task learning. The inappropriate

ernels usually result in sub-optimal or even poor performance. 
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Fig. 6. Scatter plots of actual scores versus predicted scores on testing data for cross-sectional analysis using � 2 , 1 − � 1 SMKMTL, � 2,1 MTL and � 2,1 MKMTL based on MRI 

features. The black dashed line is a reference of perfect correlation (predicted value exactly equals to actual value). 

Table 3 

Performance comparison of various multi-task learning methods on ten cognitive prediction tasks. The best results are bolded, and 

superscript symbols ∗ indicates that � 2 , 1 − � 1 SMKMTL significantly outperformed that method on that score in terms of nMSE or 

wR. Student’s t -test at a level of 0.05 was used. 

Task Metric RMTL CMTL Trace SRMTL G-SMuRFS � 2 , 1 − � 1 SMKMTL 

ADAS rMSE 7.65 ± 0.44 7.64 ± 0.37 8.17 ± 0.60 6.88 ± 0.32 6.71 ± 0.52 6.80 ± 0.44 

CC 0.58 ± 0.02 0.60 ± 0.02 0.54 ± 0.03 0.65 ± 0.03 0.67 ± 0.05 0.69 ± 0.02 

MMSE rMSE 3.32 ± 0.26 3.08 ± 0.46 6.11 ± 2.03 2.33 ± 0.27 2.19 ± 0.16 2.37 ± 0.19 

CC 0.33 ± 0.08 0.38 ± 0.04 0.14 ± 0.09 0.52 ± 0.05 0.55 ± 0.08 0.57 ± 0.05 

RAVLT-TOTAL rMSE 11.01 ± 0.58 11.56 ± 0.51 13.09 ± 3.12 9.96 ± 0.56 9.78 ± 0.50 9.82 ± 0.77 

CC 0.42 ± 0.09 0.39 ± 0.07 0.34 ± 0.17 0.52 ± 0.06 0.59 ± 0.08 0.59 ± 0.07 

RAVLT-TOT6 rMSE 3.57 ± 0.23 3.90 ± 0.26 3.78 ± 0.49 3.31 ± 0.15 3.39 ± 0.17 3.11 ± 0.19 

CC 0.43 ± 0.09 0.36 ± 0.09 0.39 ± 0.15 0.50 ± 0.09 0.50 ± 0.059 0.55 ± 0.10 

RAVLT-T30 RMS 3.70 ± 0.17 4.03 ± 0.24 3.9063 ± 0.43 3.44 ± 0.11 3.53 ± 0.21 3.42 ± 0.20 

CC 0.44 ± 0.09 0.38 ± 0.09 0.40 ± 0.14 0.52 ± 0.10 0.51 ± 0.06 0.53 ± 0.10 

RAVLT-RECOG rMSE 3.85 ± 0.30 4.38 ± 0.22 4.52 ± 0.85 3.63 ± 0.26 3.59 ± 0.24 3.68 ± 0.18 

CC 0.35 ± 0.10 0.25 ± 0.06 0.25 ± 0.13 0.41 ± 0.09 0.42 ± 0.08 0.52 ± 0.08 

FLU-ANIM rMSE 5.94 ± 0.39 6.60 ± 0.56 6.74 ± 1.42 5.32 ± 0.33 5.39 ± 0.38 5.38 ± 0.64 

CC 0.25 ± 0.09 0.18 ± 0.08 0.21 ± 0.14 0.36 ± 0.09 0.34 ± 0.11 0.39 ± 0.07 

FLU-VEG rMSE 3.98 ± 0.08 4.39 ± 0.28 4.67 ± 0.77 3.71 ± 0.08 3.67 ± 0.32 3.55 ± 0.19 

CC 0.44 ± 0.05 0.39 ± 0.07 0.33 ± 0.11 0.50 ± 0.06 0.49 ± 0.05 0.59 ± 0.05 

TRAILS-A RMS 27.77 ± 1.92 27.45 ± 1.97 28.82 ± 3.27 25.09 ± 1.42 22.91 ± 3.56 23.05 ± 1.69 

CC 0.28 ± 0.11 0.2871 ± 0.11 0.26 ± 0.11 0.34 ± 0.06 0.42 ± 0.07 0.44 ± 0.06 

TRAILS-B rMSE 90.12 ± 7.09 83.65 ± 5.41 89.68 ± 7.83 80.00 ± 4.63 72.01 ± 4.39 68.99 ± 1.21 

CC 0.29 ± 0.12 0.33 ± 0.11 0.29 ± 0.1215 0.36 ± 0.09 0.44 ± 0.073 0.51 ± 0.09 

nMSE 17.67 ± 2.30 ∗ 16.67 ± 1.91 ∗ 20.22 ± 5.21 ∗ 14.01 ± 1.16 ∗ 13.11 ± 1.13 ∗ 10.02 ± 0.34 

wR 0.38 ± 0.03 ∗ 0.35 ± 0.03 ∗ 0.31 ± 0.08 ∗ 0.46 ± 0.04 ∗ 0.47 ± 0.03 ∗ 0.61 ± 0.03 
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Table 4 

Top 20 ROIs selected and weights optimized by � 2,1 MTL and 

� 2 , 1 − � 1 SMKMTL. 

� 2,1 MTL � 2 , 1 − � 1 SMKMTL 

ROI Weight ROI Weight 

L.MidTemporal 0.198 L.MidTemporal 0.156 

R.Entorhinal 0.151 R.Entorhinal 0.154 

L.Hippocampus 0.093 L.Hippocampus 0.084 

L.SupFrontal 0.062 L.InfTemporal 0.052 

OpticChiasm 0.048 R.TransvTemporal 0.052 

R.LatVent 0.047 R.Fusiform 0.051 

R.PostCing 0.046 L.IsthmCing 0.050 

L.SupParietal 0.042 L.Precuneus 0.036 

WMHypoInt 0.038 L.RostAntCing 0.033 

L.InfParietal 0.037 R.PostCing 0.031 

L.Insula 0.035 L.SupFrontal 0.028 

R.BanksSTS 0.024 R.BanksSTS 0.022 

R.TransvTemporal 0.023 L.CaudAntCing 0.021 

L.IsthmCing 0.022 R.Paracentral 0.021 

R.Lingual 0.021 R.InfTemporal 0.018 

R.InfParietal 0.017 L.InfLatVent 0.017 

R.MidTemporal 0.016 L.LatVent 0.015 

L.InfTemporal 0.014 R.MidTemporal 0.011 

R.FrontalPole 0.011 L.Fusiform 0.009 

L.TransvTemporal 0.010 L.CaudAntCing 0.009 
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.4. Experiment III: the comparison with the MTL with other 

ssumption 

To illustrate how well our � 2 , 1 − � 1 SMKMTL works by means

f modeling the correlation among the tasks, we comprehensively

ompare our proposed methods with several popular state-of-the-

rt related methods. Representative multi-task learning algorithms

ncludes: 

1. Robust multi-Task Feature Learning (RMTL) [51] : RMTL

( min W 

L (X, Y , W ) + λ1 ‖ P ‖ ∗ + λ2 ‖ S‖ 2 , 1 subject to W =
P + S), which assumes that the model W can be decomposed

into two components: a shared feature structure P capturing

task relatedness and a group-sparse structure S detecting

outliers. 

2. Clustered multi-Task Learning (CMTL) [52] :

CMTL( min W ,M : M 

T M = I c L (X, Y , W ) + λ1 ( Tr (W 

T W ) −
Tr (M 

T W 

T W M)) + λ2 Tr (W 

T W ) , where M ∈ R 

c×t is an or-

thogonal cluster indicator matrix, and the tasks are clustered

into c < t clusters) incorporates a regularization term to induce

clustering between tasks and then share information only to

tasks belonging to the same cluster. In the CMTL, the number

of clusters is set to 5 since the 10 tasks belong to 5 sets of

cognitive functions. 

3. Trace-Norm Regularized multi-Task Learning (Trace) [53] : As-

sume that all models share a common low-dimensional sub-

space ( min W 

L (X, Y , W ) + λ‖ W ‖ ∗. 

4. Sparse regularized multi-task learning formulation (SRMTL)

[54] : SRMTL ( min W 

L (X, Y , W ) + λ1 ‖ W Z‖ 2 
F 

+ λ2 ‖ W ‖ 1 , where

Z ∈ R 

k ×k ) contains two regularization processes: (1) all tasks

are regularized by their mean value, and therefore knowledge

from one task can be utilized by other tasks via the mean

value; (2) sparsity are enforced in the learning with � 1 norm. 

5. G-SMuRFS [13] : G-SMuRFS ( min W 

L (X, Y , W ) + λ1 ‖ W ‖ 2 , 1 +
λ2 

∑ q 

l=1 
w l 

√ ∑ 

j∈G l ‖ w j. ‖ 2 ) takes into account coupled feature

and group sparsity across tasks. 

From the results, we can find that compared with the other

ulti-task learning with different assum ptions, our proposed

ethod belongs to the multi-task feature learning methods with

parsity-inducing norms, have an advantage over the other com-

arative nonsparse multi-task learning methods. Since not all the

rain regions are associated with AD, many of the features are

rrelevant and redundant. The results reveal that sparse based

TL methods are appropriate for the task of prediction cognitive

easures and better than the non-sparse based MTL method. To

ur surprise, RMTL, CMTL and Trace performs worse than Ridge

ethod which tells us that these assumptions in these methods

ay be inappropriate in the cognitive performance prediction. 

.5. Experiment IV: discriminative ROI identification 

In Alzheimer’s disease studies, researchers are not only inter-

sted in providing better cognitive scores prediction, but mainly

o identify which are the brain areas more affected by the dis-

ase, which can help to diagnose early stages of the disease and

ow it spreads. We, then, turn our analysis now to the identifica-

ion of MRI biomarkers. One of the strengths of the � 2,1 MTL and

 2 , 1 − � 1 SMKMTL formulation is that they facilitate the identifi-

ation of biomarkers due to the sparse property of � 2,1 -norm or

 1 -norm. Our � 2 , 1 − � 1 SMKMTL with ROI-scheme is a ROI-sparse

odel which is able to identify a compact set of relevant neu-

oimaging biomarkers from the region level due to the � 1 -norm

ver the kernels, which would provide us with better interpretabil-

ty of the brain region. The linear kernel is chosen as base ker-

el function. In order to visualize the distribution of the kernel
eight of each ROI, we plot the weights of the g base kernels cor-

esponding to each ROI of � 2 , 1 − � 1 SMKMTL and � 2,1 MTL in Fig. 7 .

he weight of selected ROI is calculated based on the weight pa-

ameters of W and D̄ from � 2,1 MTL and � 2 , 1 − � 1 SMKMTL, respec-

ively. The weight values indicates the contribution of different

OIs. For � 2,1 MTL, the weight is calculated by μq 

√ ∑ g 
q =1 

‖ w q. ‖ 2 for

he q -th MRI brain region, where μg = 1 for subcortical regions

nd μg = 1 / 2 for cortical regions. 

For � 2 , 1 − � 1 SMKMTL, contrast to calculation of variable w in

he linearized MTL method, the weight in � 2 , 1 − � 1 SMKMTL is cal-

ulated by Tr ( ̄D q ) for the q -th MRI brain region. The multiple Ker-

el Learning based techniques for nonlinear feature selection have

een explored and have been shown to be effective [55] . In this

xperiment, we empirically investigate the effectiveness of nonlin-

ar ROI selection in our � 2 , 1 − � 1 SMKMTL. The weights of ROIs in

oth methods are obtained by calculating the overall weights for

ll the cognitive tasks. 

From Fig. 7 , we see that weights obtained by both � 2,1 MTL and

 2 , 1 − � 1 SMKMTL are sparse, which are able to identify a compact

et of relevant neuroimaging biomarkers from the region level. The

ptimized weights corresponding to the region obtained by differ-

nt formations indicate the importance contribution for the classi-

cation. The top-20 region names and the corresponding weights

or both methdos are shown in Table 4 . From Table 4 , we can

ee that the ROIs selected from linear and kernelized methods

re different since different formulations prefer different brain re-

ion. However, some regions are common for both methods, such

s L.MidTemporal, R.Entorhinal, L.Hippocampus, and L.InfTemporal.

hese findings are in accordance with the known knowledge that

n the pathological pathway of AD. These identified brain regions

ave been pointed out in the previous literatures and have been

lso shown to be highly related to clinical functions. 

.6. Experiment V: classification 

In this experiment, we extend our regression model to a clas-

ification task. In recent years, there has been a great interest in

omputer-aided diagnosis of AD and its prodromal stage, Mild Cog-

itive Impairment (MCI). The heterogeneous MCI group involves

 mix of individuals, some who will convert to AD (named pro-

ressive MCI, pMCI) within 36 months and others who will still be
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Fig. 7. The kernel weight of each ROI. 

Table 5 

Performance comparison of comparable methods on classification in terms of accuracy. Su- 

perscript symbols ∗ and † indicate that � 2 , 1 − � 1 SMKMTL-All and � 2 , 1 − � 1 SMKMTL-ROI sig- 

nificantly outperformed that method with respect to accuracy. Student’s t -test at a level of 

0.05 was used. 

AD vs. NC MCI vs. NC AD vs. MCI pMCI vs. sMCI 

Lasso 0.80 ± 0.03 †∗ 0.71 ± 0.02 †∗ 0.72 ± 0.03 †∗ 0.66 ± 0.05 †∗

Ridge 0.78 ± 0.01 †∗ 0.70 ± 0.02 †∗ 0.70 ± 0.01 †∗ 0.65 ± 0.03 †∗

MKL 0.84 ± 0.02 †∗ 0.70 ± 0.01 †∗ 0.71 ± 0.02 †∗ 0.65 ± 0.02 †∗

� 2,1 MTL 0.83 ± 0.02 †∗ 0.72 ± 0.03 †∗ 0.73 ± 0.02 †∗ 0.69 ± 0.03 † 

� 2,1 MKMTL 0.84 ± 0.03 †∗ 0.72 ± 0.02 0.72 ± 0.01 †∗ 0.67 ± 0.02 † 

� 2 , 1 − � 1 SMKMTL-All 0.85 ± 0.04 † 0.73 ± 0.02 0.76 ± 0.03 0.68 ± 0.02 † 

� 2 , 1 − � 1 SMKMTL-ROI 0.86 ± 0.02 0.75 ± 0.03 0.76 ± 0.02 0.74 ± 0.02 
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m

stable (named stable MCI, sMCI). The diagnosis of AD can be for-

mulated as a binary or multi-class classification problem. In this

experiment, we considered four binary classification problems: AD

vs. NC, MCI vs. NC, AD vs. MCI, and pMCI vs. sMCI, and consider

each binary classification problem as a task. Then, the multi-class

problem is formulated as a multi-task paradigm that exploits the

correlations amongst multiple tasks by learning them simultane-

ously rather than individually. The previous works have shown that

learning multiple related tasks simultaneously can get better re-

sults than learning these tasks independently [56,57] for AD di-

agnosis. To evaluate the performance of our proposed method in

disease diagnosis, we compare our proposed methods with other

baseline methods. 

From the results of Table 5 , � 2 , 1 − � 1 SMKMTL consistently im-

proved the performance of the linearized MTL in all the test cases

except the classification of pMCI vs. sMCI, which verifies the ben-

efits of jointly learning from the classification tasks and implies

that considering the correlation over the high dimensional feature

and kernel function at the same time is capable of uncovering

the structure information shared by multiple tasks for multi-task

learning. 

To show the superior performance of our algorithm, we selected

several state-of-the-art classification methods for comparison: 

(1) Subspace-based linearized MTL [57] : It combines fea-

ture selection and subspace learning in a unified � 2,1 MTL

framework. It also formulates the multi-class problem as

multi-task paradigm that exploits the correlations amongst

multiple tasks by learning them simultaneously rather than

individually. 

(2) MKMFA [58] : It incorporates the Marginal Fisher Analysis

with � 2,1 -norm based MKL to simultaneously select a sub-

set of the relevant brain regions and learn a dimensionality
transformation. �  
Moreover, few previous works in a recent study use the entire

ata from ADNI-1 for AD/MCI classification. Tong et al. [59] pro-

osed to use a multiple instance learning method (mi-Graph) with

ocal intensity patches as features for the detection of AD and its

CI. Coup et al. proposed the SNIPE (Scoring by Nonlocal Im-

ge Patch Estimator) method with a large amount of non-local

atches [60] . Wolz et al. [61] proposed a multi-method to com-

ine multiple features (Hippocampal volume, cortical thickness,

anifold-based features, tensor-based morphometry features) on

he same dataset. In this paper, we compared the three state-of-

he-art methods. To make a more fair comparison, the classification

esults are obtained using leave-one-out cross validation, the eval-

ation scheme of which is the same as the works in [59–61] . Note

hat MKMFA and Subspace-based linearized MTL use the same ROI

ased feature set as our method. Table 6 shows the performance

f each algorithm for two binary classifications with respect to ac-

uracy, sensitivity and specificity. 

Experiments indicate that our algorithm is able to attain

igher classification performance than other methods. In partic-

lar, compared with MKMFA which also uses MKL framework,

 2 , 1 − � 1 SMKMTL obtained a slightly better result due to the con-

ideration of the useful correlation among multiple classification

asks. Compared with the ROI-based morphological features used

y our method, MiGraph and SNIPE use the patch based features

hich could provide much richer information for the disease. Al-

hough direct comparison with the aforementioned studies is not

ppropriate due to the use of different MRI features, the obtained

esults validate the promising performance of our method for clas-

ification with less features. 

.7. Experiment VI: multi-modalities fusion 

The MKL model has been successfully applied to combine

ultiple modalities in AD studies [20] . Now, we extend � 2 , 1 −
 SMKMTL to the multi-modal case for fusing multiple modali-
1 
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Table 6 

Comparison of the state-of-the-art methods for AD diagnosis on the dataset from ADNI-1. 

Methods Features AD vs. NC pMCI vs. sMCI 

ACC SEN SPE ACC SEN SPE 

� 2 , 1 − � 1 SMKMTL ROI-based morphological features 0.91 0.87 0.93 0.74 0.69 0.71 

MKMFA [58] ROI-based morphological features 0.89 0.86 0.92 0.71 0.68 0.72 

Subspace-based linearized MTL [57] ROI-based morphological features 0.82 0.79 0.88 0.64 0.61 0.68 

MiGraph [59] patch based features 0.89 0.85 0.93 0.69 0.66 0.71 

SNIPE [60] patch based features 0.89 0.84 0.93 0.70 0.69 0.71 

Multi-Method [61] ROI-based morphological features 0.87 0.78 0.95 0.67 0.69 0.66 
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Fig. 8. The illustration of multi-modality data fusing and multi-task learning in our 

proposed unified framework. 

Fig. 9. The illustration of multi-modality data fusing and multi-task learning in the 

M3T method [30] . 
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ies data in ADNI dataset. Clinical and research studies commonly

emonstrate that complementary brain images for a more accu-

ate and rigorous assessment of the disease status and cognitive

unction [14,62–64] . To estimate the effect of combining multi-

odality data with our � 2 , 1 − � 1 SMKMTL, we further perform

ome experiments, which are (1) employing only MRI modality,

2) employing only PET modality, (3) combining two modalities:

ET and MRI (MP), and (4) combining three modalities: PET, MRI

nd demographic information including age, gender, years of edu-

ation and ApoE genotyping (MPD). We compare the performance

f � 2,1 MTL and � 2,1 MKMTL on the fusing multi-modalities. For

 2,1 MTL, the features from multi-modalities are concatenated into

 long vector features. In the � 2,1 MKMTL and � 2 , 1 − � 1 SMKMTL,

en different kennel functions described in the first experiment are

sed for each modality. 

Different than the previous experiments, the samples from

DNI-2 are used instead of ADNI-1, since the amount of the pa-

ients with PET is sufficient. From the ADNI-2, we obtained all

he patients with both MRI and PET, totally 756 samples. The PET

maging data are from the ADNI database processed by the UC

erkeley team, who corrected the raw scans for partial volume

ffects using the geometric transfer matrix approach and coregis-

ered each florbetapir scan to the corresponding MRI using SPM5.

ith the same Freesurfer-defined regions as MRI, the mean florbe-

apir uptake is calculated within the cortical and reference regions.

he procedure of image processing is described in http://adni.loni.

sc.edu/updated-florbetapir-av-45-pet-analysis-results/ . The pre- 

iction performance results are shown in Tables 7 and 8 . Note

hat the amount of tasks is 9 due to the no acquisition of VEG

easure for patients in ADNI-2. From the results, it is clear that

he method with multi-modality outperforms the methods using

ne single modality of data. Furthermore, the results show that

he most of the improvement of � 2 , 1 − � 1 SMKMTL is statistically

ignificant. This validates our assumption that the complemen-

ary information among different modalities is helpful for cogni-

ive function prediction. Regardless of two or three modalities, the

roposed � 2 , 1 − � 1 SMKMTL achieved better performances than the

inear based multi-task learning for the most cases, same as for the

ingle modality learning task above. 

Besides the baseline methods, we also compare the clos-

st competing techniques to ours: Multi-modal multi-task learn-

ng (M3T) [30] , Manifold regularized multi-task feature selec-

ion (M2TFS) [28] and the Inter-modality relationship constrained

ulti-modality multi-task learning (I-M3T) [29] . All of the above

ethods utilize the multi-kernel learning combined with multi-

ask learning for multi-modality data. Note that both the M2TFS

nd I-M3T consider each modality rather than cognitive outcome

s a task to feature selection, thus require the same number of

eatures computed from MRI and PET modalities. In order to meet

t, we select the same regions from MRI and PET, totally 70 re-

ions remained. M3T employs an � 2,1 MTL to selects the common

ubset of relevant features for multiple features from each modal-

ty, and uses a multi-modal support vector machine to fuse the

bove-selected features from all modalities to predict multiple pre-
 e  
iction tasks. Since M2TFS and I-M3T require that each modal-

ty contains the same feature dimensionality, we applied them to

nly MRI and PET (MP) in our experiments. Regardless of the two

r three modalities, the proposed method achieves better perfor-

ances than the three closely related works. This poor regression

erformance can be attributed to the fact that: (1) M2TFS and I-

3T do not take the correlation of multiple prediction tasks into

ccount; (2) Although M3T incorporates the correlation into MTL

o select the discriminative feature subset across multiple tasks,

he feature learning and multi-modality fusion are conducted indi-

idually. (3) The two-stage strategy employed by the three meth-

ds tends to result in inconsistencies and can not achieve a op-

imally global solution, since the feature learning works in the in-

ut feature space while multi-modality fusing operates in the input

eature space. The unified framework can be illustrated in Fig. 8 .

oreover, we also illustrate the multi-modality data fusing scheme

roposed by M3T in Fig. 9 and M2TFS (I-M3T) in Fig. 10 , which

mploy the combination of MKL and MTL. We can clearly find that

http://adni.loni.usc.edu/updated-florbetapir-av-45-pet-analysis-results/
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Table 7 

Performance comparison of various methods with fusing multiple modalities data in terms of rMSE 

and nMSE. The superscript symbols ∗ indicates that � 2 , 1 − � 1 SMKMTL-All significantly outperformed that 

method on that score in terms of nMSE. Student’s t -test at a level of 0.05 was used. 

Method ADAS MMSE FLU TRAILS 

ANIM A B 

� 2,1 MTL-MRI 6.49 ± 1.02 1.96 ± 0.30 4.91 ± 0.25 16.39 ± 2.90 55.82 ± 7.68 

� 2,1 MTL-PET 6.94 ± 1.24 2.11 ± 0.29 5.19 ± 0.14 16.56 ± 3.53 56.88 ± 9.44 

� 2,1 MTL-MP 6.21 ± 1.03 2.06 ± 0.29 4.92 ± 0.26 16.09 ± 2.76 53.70 ± 7.14 

� 2,1 MTL-MPD 6.17 ± 0.97 2.06 ± 0.27 4.78 ± 0.20 15.97 ± 2.78 53.37 ± 7.24 

� 2,1 MKMTL-MRI 6.36 ± 0.94 2.07 ± 0.29 4.99 ± 0.23 16.18 ± 3.08 55.95 ± 9.47 

� 2,1 MKMTL-PET 6.81 ± 1.15 2.06 ± 0.36 5.15 ± 0.22 16.61 ± 3.58 57.85 ± 11.24 

� 2,1 MKMTL-MP 6.11 ± 0.88 2.00 ± 0.25 4.96 ± 0.26 16.13 ± 2.98 54.13 ± 9.45 

� 2,1 MKMTL-MPD 5.96 ± 0.83 1.95 ± 0.25 4.82 ± 0.22 16.00 ± 3.06 53.48 ± 9.59 

� 2 , 1 − � 1 SMKMTL-MRI 6.42 ± 0.95 1.95 ± 0.30 4.88 ± 0.26 16.11 ± 2.93 54.96 ± 7.49 

� 2 , 1 − � 1 SMKMTL-PET 6.78 ± 1.06 2.05 ± 0.32 5.10 ± 0.25 16.52 ± 3.51 55.51 ± 9.56 

� 2 , 1 − � 1 SMKMTL-MP 6.08 ± 0.98 1.91 ± 0.29 4.85 ± 0.24 15.95 ± 2.99 52.44 ± 8.07 

� 2 , 1 − � 1 SMKMTL-MPD 6.03 ± 0.98 1.90 ± 0.29 4.80 ± 0.24 15.88 ± 3.02 52.20 ± 8.12 

M3T-MP [30] 6.20 ± 1.45 2.12 ± 0.24 4.78 ± 0.19 16.45 ± 2.83 53.57 ± 7.26 

M3T-MPD [30] 6.15 ± 1.22 2.01 ± 0.18 4.71 ± 0.33 15.70 ± 2.25 52.31 ± 6.96 

M2TFS-MP [28] 6.32 ± 1.58 2.25 ± 0.31 4.77 ± 0.15 16.31 ± 2.68 54.45 ± 7.11 

I-M3T-MP [29] 6.39 ± 1.66 2.38 ± 0.36 4.84 ± 0.22 16.22 ± 2.18 55.66 ± 7.82 

Method RAVLT nMSE 

TOTAL TOT6 T30 RECOG 

� 2,1 MTL-MRI 10.18 ± 0.64 3.53 ± 0.14 3.73 ± 0.19 3.16 ± 0.30 10.24 ± 0.73 ∗

� 2,1 MTL-PET 10.41 ± 0.44 3.62 ± 0.14 3.79 ± 0.17 3.25 ± 0.36 10.72 ± 1.16 ∗

� 2,1 MTL-MP 10.01 ± 0.55 3.50 ± 0.14 3.69 ± 0.19 3.16 ± 0.31 9.71 ± 0.62 ∗

� 2,1 MTL-MPD 9.75 ± 0.57 3.45 ± 0.15 3.64 ± 0.20 3.17 ± 0.31 9.52 ± 0.60 ∗

� 2,1 MKMTL-MRI 10.09 ± 0.60 3.53 ± 0.08 3.73 ± 0.25 3.20 ± 0.30 10.21 ± 1.01 ∗

� 2,1 MKMTL-PET 10.30 ± 0.43 3.59 ± 0.14 3.75 ± 0.23 3.20 ± 0.35 10.82 ± 1.45 ∗

� 2,1 MKMTL-MP 9.78 ± 0.37 3.47 ± 0.08 3.66 ± 0.19 3.15 ± 0.30 9.71 ± 0.96 ∗

� 2,1 MKMTL-MPD 9.35 ± 0.46 3.40 ± 0.03 3.60 ± 0.22 3.19 ± 0.29 9.41 ± 0.98 ∗

� 2 , 1 − � 1 SMKMTL-MRI 9.98 ± 0.52 3.47 ± 0.13 3.67 ± 0.20 3.14 ± 0.31 9.93 ± 0.75 ∗

� 2 , 1 − � 1 SMKMTL-PET 10.19 ± 0.41 3.56 ± 0.14 3.74 ± 0.21 3.19 ± 0.35 10.31 ± 1.10 ∗

� 2 , 1 − � 1 SMKMTL-MP 9.72 ± 0.46 3.39 ± 0.13 3.59 ± 0.16 3.11 ± 0.32 9.28 ± 0.86 

� 2 , 1 − � 1 SMKMTL-MPD 9.56 ± 0.44 3.36 ± 0.12 3.55 ± 0.17 3.10 ± 0.32 9.16 ± 0.86 

M3T-MP [30] 9.84 ± 0.41 3.33 ± 0.19 3.52 ± 0.20 3.32 ± 0.39 9.55 ± 0.58 ∗

M3T-MPD [30] 9.77 ± 0.52 3.21 ± 0.24 3.49 ± 0.12 3.29 ± 0.31 9.42 ± 0.55 ∗

M2TFS-MP [28] 9.91 ± 0.35 3.37 ± 0.28 3.76 ± 0.24 3.12 ± 0.44 9.49 ± 0.41 ∗

I-M3T-MP [29] 9.80 ± 0.30 3.45 ± 0.30 3.79 ± 0.21 3.33 ± 0.47 9.59 ± 0.54 ∗

Fig. 10. The illustration of multi-modality data fusing and multi-task learning in the M2TFS [28] (I-M3T [29] ) method. 
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the MKL and MTL are conducted individually and performed in the

different space. 

6. Discussion and future directions 

This paper presents a novel mixed sparsity-inducing norm reg-

ularized nonlinear multi-task learning approach for brain cognitive

performance prediction. In short, the main contributions of this pa-

per are summarized below: 
1. We propose a general unifying multi-kernel framework to

uild nonlinear relationship the MRI features and cognitive out-

omes, and model the relationship among the prediction tasks in

he kernel induced feature space. Our method not only assigns

roper weights to each kernel function but also considers the im-

ortance of the features in the feature space induced by these base

ernel functions. 

2. We propose a mixed sparsity-Inducing � 2 , 1 − � 1 norm to reg-

larize the multiple kernel multi-task learning formulation. 
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Table 8 

Performance comparison of various methods with fusing multiple modalities data in terms of CC and 

wR. Significantly outperformed that method on that score in terms of wR. Student’s t -test at a level 

of 0.05 was used. 

Method ADAS MMSE FLU TRAILS 

ANIM A B 

� 2,1 MTL-MRI 0.67 ± 0.09 0.53 ± 0.11 0.48 ± 0.11 0.41 ± 0.11 0.52 ± 0.07 

� 2,1 MTL-PET 0.61 ± 0.05 0.48 ± 0.08 0.39 ± 0.10 0.38 ± 0.12 0.50 ± 0.06 

� 2,1 MTL-MP 0.70 ± 0.07 0.54 ± 0.10 0.48 ± 0.11 0.43 ± 0.11 0.56 ± 0.07 

� 2,1 MTL-MPD 0.70 ± 0.06 0.56 ± 0.09 0.52 ± 0.10 0.45 ± 0.11 0.57 ± 0.06 

� 2,1 MKMTL-MRI 0.67 ± 0.09 0.51 ± 0.11 0.46 ± 0.09 0.41 ± 0.11 0.52 ± 0.09 

� 2,1 MKMTL-PET 0.63 ± 0.05 0.49 ± 0.10 0.41 ± 0.13 0.37 ± 0.09 0.47 ± 0.06 

� 2,1 MKMTL-MP 0.71 ± 0.06 0.53 ± 0.10 0.47 ± 0.11 0.42 ± 0.10 0.56 ± 0.08 

� 2,1 MKMTL-MPD 0.72 ± 0.06 0.55 ± 0.11 0.51 ± 0.09 0.44 ± 0.09 0.58 ± 0.06 

� 2 , 1 − � 1 SMKMTL-MRI 0.67 ± 0.09 0.54 ± 0.12 0.49 ± 0.09 0.42 ± 0.13 0.52 ± 0.10 

� 2 , 1 − � 1 SMKMTL-PET 0.63 ± 0.05 0.48 ± 0.10 0.41 ± 0.11 0.38 ± 0.09 0.52 ± 0.06 

� 2 , 1 − � 1 SMKMTL-MP 0.71 ± 0.06 0.56 ± 0.10 0.49 ± 0.09 0.43 ± 0.12 0.58 ± 0.07 

� 2 , 1 − � 1 SMKMTL-MPD 0.72 ± 0.06 0.57 ± 0.10 0.51 ± 0.09 0.44 ± 0.12 0.58 ± 0.07 

M3T-MP [30] 0.69 ± 0.11 0.52 ± 0.12 0.49 ± 0.12 0.39 ± 0.17 0.55 ± 0.08 

M3T-MPD [30] 0.71 ± 0.08 0.54 ± 0.13 0.51 ± 0.11 0.43 ± 0.10 0.56 ± 0.09 

M2TFS-MP [28] 0.62 ± 0.15 0.49 ± 0.18 0.45 ± 0.09 0.41 ± 0.22 0.51 ± 0.13 

I-M3T-MP [29] 0.62 ± 0.11 0.48 ± 0.18 0.41 ± 0.11 0.38 ± 0.32 0.50 ± 0.11 

Method RAVLT wR 

TOTAL TOT6 T30 RECOG 

� 2,1 MTL-MRI 0.57 ± 0.07 0.53 ± 0.08 0.51 ± 0.04 0.44 ± 0.07 0.52 ± 0.08 ∗

� 2,1 MTL-PET 0.54 ± 0.10 0.49 ± 0.12 0.49 ± 0.09 0.40 ± 0.09 0.48 ± 0.08 ∗

� 2,1 MTL-MP 0.59 ± 0.07 0.54 ± 0.08 0.52 ± 0.03 0.45 ± 0.07 0.54 ± 0.07 ∗

� 2,1 MTL-MPD 0.61 ± 0.07 0.56 ± 0.07 0.54 ± 0.02 0.44 ± 0.08 0.55 ± 0.06 ∗

� 2,1 MKMTL-MRI 0.58 ± 0.06 0.53 ± 0.09 0.51 ± 0.04 0.43 ± 0.07 0.51 ± 0.07 ∗

� 2,1 MKMTL-PET 0.55 ± 0.11 0.50 ± 0.11 0.50 ± 0.08 0.43 ± 0.08 0.48 ± 0.07 ∗

� 2,1 MKMTL-MP 0.61 ± 0.08 0.56 ± 0.10 0.54 ± 0.05 0.46 ± 0.07 0.54 ± 0.07 ∗

� 2,1 MKMTL-MPD 0.65 ± 0.07 0.57 ± 0.08 0.56 ± 0.03 0.44 ± 0.08 0.56 ± 0.06 ∗

� 2 , 1 − � 1 SMKMTL-MRI 0.59 ± 0.07 0.55 ± 0.08 0.53 ± 0.03 0.45 ± 0.07 0.53 ± 0.08 ∗

� 2 , 1 − � 1 SMKMTL-PET 0.56 ± 0.10 0.51 ± 0.11 0.50 ± 0.08 0.43 ± 0.09 0.49 ± 0.07 ∗

� 2 , 1 − � 1 SMKMTL-MP 0.62 ± 0.07 0.58 ± 0.08 0.56 ± 0.04 0.47 ± 0.07 0.56 ± 0.07 ∗

� 2 , 1 − � 1 SMKMTL-MPD 0.63 ± 0.06 0.59 ± 0.07 0.57 ± 0.04 0.49 ± 0.08 0.57 ± 0.06 

M3T-MP [30] 0.61 ± 0.08 0.52 ± 0.07 0.52 ± 0.09 0.41 ± 0.08 0.51 ± 0.08 ∗

M3T-MPD [30] 0.62 ± 0.09 0.55 ± 0.11 0.54 ± 0.06 0.43 ± 0.11 0.52 ± 0.05 ∗

M2TFS-MP [28] 0.58 ± 0.13 0.50 ± 0.15 0.51 ± 0.11 0.42 ± 0.08 0.50 ± 0.09 ∗

I-M3T-MP [29] 0.55 ± 0.11 0.47 ± 0.12 0.52 ± 0.13 0.40 ± 0.09 0.51 ± 0.06 ∗
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3. We design an efficient optimization algorithm to solve this

on-smooth formulation. 

4. To highlight the advantages of our proposed MTL method,

e thoroughly investigate and evaluate the proposed method to

emonstrate our methods along various dimensions including pre-

iction performance on the cognitive outcomes prediction, classifi-

ation, biomarkers identification and multi-modal data fusion. 

We conducted extensive experiments using data from the

lzheimer’s Disease Neuroimaging Initiative (ADNI) to demonstrate

ur methods along various dimensions including prediction perfor-

ance on the baseline cognitive outcomes, biomarkers identifica-

ion and multi-modal data fusion. 

While there has been a steady growth in machine learning re-

earch for computer aided diagnosis or healthcare, there are some

undamental problems for medical predictive modeling: 

(1) How to fuse the multi-modality data of patients. The multi-

modality clinical data contains important information for the

accurate and effective diagnosis of diseases. Thus, effectively

fusing various modalities of each patient can provide supple-

mentary clinical information which is not apparent in each

individual modality alone. 

(2) How to leverage the correlation of multiple related clinical

tasks. The ability to learn an accurate model for predict-

ing patient outcomes hinges on the amount of training data

available. When training samples from a task are limited,

it is not enough to learn an accurate model. Many clini-

cal tasks for the same disease are relevant, it is important

to collaboratively learn multiple clinically-related tasks by
studying the inherent interactions and correlations among

these tasks. Besides, a recent study formulated mortality

prediction as multi-task learning in which a task corre-

sponds to a disease [65] . Because patients are usually asso-

ciated with multiple diseases, it would be necessary to con-

sider the correlation of different diseases each patient is as-

sociated with. Moreover, Xu et al. developed a personalized

model by leveraging the shared information among patients,

to improve performance of each task [66] . 

(3) How to identify the sensitive biomarkers from high dimensional

features. In the high dimensional clinical data, only a small

number of variables are relevant to the disease. Hence, it is

critical to intelligently and automatically extract the useful

information from data. 

To our best knowledge, our model is the first method to jointly

using multi-modality data and multi-task learning. This approach

xploits both the task relationship and the complementary nature

f different modalities for an effective and strong predictive model.

ext, we focus our discussion on the important components of the

nified framework. 

• Multi-kernel learning framework 

Although the linearized method can be optimized efficiently, it

annot be directly applied to capture the high order statistics and

he underlying structures of complex data spaces. The kernel based

odels enable us to capture nonlinear associations between MRI

nd cognitive outcomes. As the kernel plays an essential role in

he formulation, inappropriate kernels may not accurately capture
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the correlation structure of data. The multi-kernel learning frame-

work aims to solve the kernel selection problem in a principled

way kernel selection, therefore it can provide a solution to obtain

an optimally combined kernel representation of candidate kernel

functions. In the Experiment I, we compared with the single kernel

based MTL methods ( � 2,1 KMTL and CORNLIN), � 2 , 1 − � 1 SMKMTL

achieved a better performance, which indicates the importance of

kernel learning. Moreover, the result in Experiment II also indicates

that the kernel selection for kernelized methods is very crucial

for multi-task learning. The inappropriate kernels usually result

in sub-optimal or even poor performance. Furthermore, through

learning common kernel functions across multiple tasks, it can fa-

cilitate to look for more discriminative and robust kernel functions.

Furthermore, the multi-kernel learning provides a general frame-

work for regression and classification. The promising classification

performance obtained in Experiment V also indicates a generaliza-

tion ability of our proposed framework. 

• Multi-task learning with kernel-wise and feature-wise correlation 

It is known that there exist inherent correlations among mul-

tiple clinical cognitive variables of a subject. The key of MTL is

to identify how the tasks are related. In the Experiment I, we

compared MTL with feature representation sharing ( � 2,1 MTL and

CORNLIN), MTL with kernel parameters sharing ( � 2,1 MKMTL) and

our MTL method with both feature and kernel sharing. The results

demonstrate that neither MTL with feature representation sharing

nor MTL with kernel parameters sharing can model well related-

ness among the prediction tasks of the cognitive outcomes. By con-

trast, joint integration of feature-level and kernel-level analysis is

more favorable by both feature representation and model parame-

ter sharing. 

• Multi-modality fusion 

Several recent studies using multi-modality data in ADNI have

demonstrated that it is important and beneficial to build predic-

tion models by leveraging multi-modality data. Depending on the

task, different fusion methods lead to different classification per-

formances. In our Experiment VI, we conducted a comparison be-

tween feature-level fusion and kernel-level fusion. The multiple

kernels can come from different sources of feature spaces. More

specifically, the data of each modality is represented using a base

kernel, and by the optimal weight parameters for multiple modal-

ity are optimized. In the proposed multi-modality learning formu-

lation, both feature and modality level learning are performed in

a unified multi-kernel multi-task learning framework. It beats the

comparable methods proposed in [30] which perform feature-level

and modality-level learning separately. Furthermore, as shown in

Tables 7 and 8 , our method is better than two other recent studies

[28,29] , even though they used the combination of MKL and MTL,

which further shows the advantage of our proposed method due

to considering the multi-modality data and multi-prediction tasks

at the same time. Our new model is designed for multi-modality

data fusion, which can also be naturally extended to deal with data

with multi-view [67] or heterogeneous feature subset [68] . 

• Effect of nonlinear biomarker selection 

The interpretability is highly desired in clinical diagnosis. The

sparse representations enhance the interpretability of the model.

Our proposed method is a sparse model that is able to iden-

tify a compact set of relevant neuroimaging biomarkers. Differ-

ent from the linearized sparse models, � 2 , 1 − � 1 SMKMTL performs

non-linear feature selection by associating a base kernel for each

feature (ROI). Henceforth, it poses this problem of non-linear fea-

ture selection as that of optimizating the kernel parameters of the

kernels. There has been much recent progress in non-linear feature
election where the predictor is a non-linear function of the in-

ut features. Since the complex relationship between the MRI fea-

ures and cognitive outcomes, the traditional linear feature learn-

ng methods are not able to identify the underlying important

eatures. However, no previous work investigate the AD-relevant

maging markers non-linear biomarker selection by a non-linear

cheme. From Table 4 in the Experiment IV, we can observe that

ome ROIs identified by � 2 , 1 − � 1 SMKMTL, such as R.Fusiform [69] ,

.Precuneus, [70] and Paracentral [71] , are consistent with results

eported in previous studies on neuroimaging and cognition. How-

ver, they are not identified by the � 2,1 MTL. 

In summary, if the data contains multi-modalities or there

xists some other clinical prediction tasks relevant to the cur-

ent task, properly modeling the underlying correlation among the

odalities and tasks could improve the prediction performance,

specially for limited training samples from a single modality. MKL

s a good choice for a predictive model for multi-modality fusion

nd multi-task learning due to its nonlinearity and generalization

bility. Moreover, MKL can be used to perform nonlinear feature

election with the help of sparsity-inducing norm. Furthermore,

lthough the training time of optimization is longer relative to

he linear based methods. For the MKL methods, the time com-

lexity of the gradient calculation is ignorable compared to the

VR solver. Therefore, the warm-start technique is used for suc-

essive SVR retrainings to accelerate the training process in our

 2 , 1 − � 1 SMKMTL method. 

Although our proposed method demonstrates a good perfor-

ance, some limitations should be considered in future studies. 

(1) In our current work, the � 2,1 -norm is not extended to a more

general � 2, q norm ( q ≤ 1) . The � q norm over the ROI can ob-

tain different sparsities by varying and optimizing the value

of q , which can achieve more interpretable results. As the

next step, we will extend � 2,1 -norm to � 2, q -norm, and de-

sign an efficient optimization algorithm to solve it. 

(2) The � 2 , 1 − � 1 regularized SMKMTL promotes sparse ker-

nel combinations to support interpretability. However, the

sparse MKL with � 1 -norm relies on the assumption that

some kernels are irrelevant for predicting cognitive out-

comes. Enforcing sparse combination may lead to unex-

pected models [72] . Various MKL formulations have been

developed including � p -norm ( p ≥ 1) regularization over the

kernel weights. To address the limitation, we extend it to

� 2 , 1 − � p SMKMTL by generalizing MKL to arbitrary � p -norm

( p ≥ 1) allowing for non-sparse solutions. 

(3) When correlating the multiple prediction models, we as-

sume that all the tasks shared the same feature subset in

the input space or kernel induced feature space, which is

not realistic sometimes. Different assessments evaluate the

subjects’ different cognitive functions, which results in dif-

ferent tasks preferring different brain regions, such as the

tasks in TRAILS aimed to test a combination of visual, motor

and executive functions, while the test of RAVLT aimed to

test verbal learning memory. It is reasonable to assume that

the correlation among the tasks are not equal, some tasks

may be more closely related than others in the assessment

tests of cognitive outcomes. We will extend our model to

exploit more complex correlation structure inherent in the

correlation among the tasks. 

(4) Our method is a supervised model requiring a large amount

of samples with target values or labels. However, in most

applications, labeled data are expensive to collect but un-

labeled data are abundant. In some MTL applications, the

training set of each task consists of both labeled and un-

labeled data, hence we hope to exploit useful information
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contained in the unlabeled data to further improve the per-

formance of MTL. 

. Conclusion 

Many multi-task learning with sparsity-inducing regularization

or modeling cognitive outcomes in AD have been proposed in

he past decade, current formulations remain restricted to linear

odels and can’t capture the relationship between the MRI fea-

ures and cognitive outcomes. To address these shortcomings, we

ropose a multi-kernel multi-task learning with a joint sparsity-

nducing regularization to model the more complicated but more

exible relationship between MRI features and cognitive outcomes.

ur algorithm performs multi-task learning in the multiple kernel

pace and optimizes the combination of kernel function simultane-

usly for modeling the disease’s cognitive scores. Is capable of un-

overing the structure information shared by multiple tasks in the

KHS. Extensive experiments on ADNI dataset illustrate that pro-

osed method not only yields superior performance on prediction

erformance of cognitive measures, but also is a powerful tool for

iscovering a small set of imaging biomarkers. The proposed ap-

roach is not restricted to cognitive performance prediction of sub-

ects in AD, but also can be applied to other multi-task problem in

any other applications. We will extend our methods to arbitrary

 p -norm MKL with p > 1 allowing for non-sparse solutions. 
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